

# Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE A Level Mathematics Pure Mathematics Paper 2 (9MA0/02)

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2018

Publications Code 9MA0\_02\_1806\_MS

All the material in this publication is copyright

© Pearson Education Ltd 2018

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL GCE MATHEMATICS

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 100.
- 2. These mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- awrt answers which round to
- **SC**: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- **dp** decimal places
- **sf** significant figures
- \* The answer is printed on the paper or ag- answer given

## 4. All M marks are follow through.

A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response they wish to submit</u>, examiners should mark this response.

If there are several attempts at a question which have not been crossed out, examiners should mark the final answer which is the answer that is the most complete.

- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternative answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

## **General Principles for Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles)

# Method mark for solving 3 term quadratic:

#### 1. Factorisation

$$(x^2+bx+c) = (x+p)(x+q)$$
, where  $|pq| = |c|$ , leading to  $x = ...$ 

$$(ax^2+bx+c)=(mx+p)(nx+q)$$
, where  $|pq|=|c|$  and  $|mn|=|a|$ , leading to  $x=...$ 

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c)

## 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

# Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

# 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

#### **Exact answers**

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

## **Answers without working**

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

| Questi       | on Scheme                                                                                                                                                          | Marks | AOs    |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--|
| 1            | $g(x) = \frac{2x+5}{x-3}, \ x \ge 5$                                                                                                                               |       |        |  |
| (a)          | $g(5) = \frac{2(5) + 5}{5 - 3} = 7.5 \implies gg(5) = \frac{2("7.5") + 5}{"7.5" - 3}$                                                                              | M1    | 1.1b   |  |
| Way 1        | $gg(5) = \frac{40}{9} \left( \text{or } 4\frac{4}{9} \text{ or } 4.4 \right)$                                                                                      | A1    | 1.1b   |  |
|              |                                                                                                                                                                    | (2)   |        |  |
| (a)<br>Way 2 | $\left(\frac{1}{x-3}\right)^{-3}$ $\left(\frac{1}{(5)-3}\right)^{-3}$                                                                                              | M1    | 1.1b   |  |
|              | $gg(5) = \frac{40}{9} \left( \text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$                                                                                     | A1    | 1.1b   |  |
|              |                                                                                                                                                                    | (2)   |        |  |
| (b)          | {Range:} $2 < y \le \frac{15}{2}$                                                                                                                                  | B1    | 1.1b   |  |
|              |                                                                                                                                                                    | (1)   |        |  |
| (c)<br>Way 1 | $y = \frac{2x+5}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$                                                                                           | M1    | 1.1b   |  |
|              | $x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2}  \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$                                                                    | M1    | 2.1    |  |
|              | $g^{-1}(x) = \frac{3x+5}{x-2},  2 < x \le \frac{15}{2}$                                                                                                            | A1ft  | 2.5    |  |
|              |                                                                                                                                                                    | (3)   |        |  |
| (c)<br>Way 2 |                                                                                                                                                                    | M1    | 1.1b   |  |
|              | $x-3 = \frac{11}{y-2} \Rightarrow x = \frac{11}{y-2} + 3  \left\{ \text{or } y = \frac{11}{x-2} + 3 \right\}$                                                      | M1    | 2.1    |  |
|              | $g^{-1}(x) = \frac{11}{x-2} + 3$ , $2 < x \le \frac{15}{2}$                                                                                                        | A1ft  | 2.5    |  |
|              |                                                                                                                                                                    | (3)   |        |  |
|              | Notes for Question 1                                                                                                                                               | (6    | marks) |  |
| (a)          | Hores for Ancerton T                                                                                                                                               |       |        |  |
| M1:          | Full method of attempting g(5) and substituting the result into g                                                                                                  |       |        |  |
| Note:        | Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$ , o.e. Note that $gg(x) = \frac{9x-5}{14-x}$ |       |        |  |
| A1:          | Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or $4.4$ or an exact equivalent                                                                                           |       |        |  |
| Note:        | Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4                                                                              |       |        |  |

|              | Notes for Question 1 Continued                                                                                                         |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>(b)</b>   |                                                                                                                                        |  |  |  |
| B1:          | States $2 < y \le \frac{15}{2}$ Accept any of $2 < g \le \frac{15}{2}$ , $2 < g(x) \le \frac{15}{2}$ , $\left(2, \frac{15}{2}\right]$  |  |  |  |
| Note:        | Accept $g(x) > 2$ and $g(x) \le \frac{15}{2}$ o.e.                                                                                     |  |  |  |
| (c)<br>Way 1 |                                                                                                                                        |  |  |  |
| M1:          | Correct method of cross multiplication followed by an attempt to collect terms in <i>x</i> or terms in a swapped <i>y</i>              |  |  |  |
| M1:          | A complete method (i.e. as above and also factorising and dividing) to find the inverse                                                |  |  |  |
| A1ft:        | Uses correct notation to correctly define the inverse function $g^{-1}$ , where the domain of                                          |  |  |  |
|              | g <sup>-1</sup> stated correctly or correctly followed through (using correct notation) on the values shown in                         |  |  |  |
|              | their range in part (b). Allow $g^{-1}: x \to \infty$ . Condone $g^{-1} = \infty$ . Do not accept $y = \infty$ .                       |  |  |  |
| Note:        | Correct notation is required when stating the domain of $g^{-1}(x)$ . Allow $2 < x \le \frac{15}{2}$ or $\left(2, \frac{15}{2}\right]$ |  |  |  |
|              | Do not allow any of e.g. $2 < g \le \frac{15}{2}$ , $2 < g^{-1}(x) \le \frac{15}{2}$                                                   |  |  |  |
| Note:        | Do not allow A1ft for following through their range in (b) to give a domain for $g^{-1}$ as $x \in \mathbb{R}$                         |  |  |  |
| (c)<br>Way 2 |                                                                                                                                        |  |  |  |
| M1:          | Writes $y = \frac{2x+5}{x-3}$ in the form $y = 2 \pm \frac{k}{x-3}$ , $k \ne 0$ and rearranges to isolate y and 2 on one side          |  |  |  |
|              | of their equation. <b>Note:</b> Allow the equivalent method with x swapped with y                                                      |  |  |  |
| M1:          | A complete method to find the inverse                                                                                                  |  |  |  |
| A1ft:        | As in Way 1                                                                                                                            |  |  |  |
| Note:        | If a candidate scores no marks in part (c), but                                                                                        |  |  |  |
|              | • states the domain of $g^{-1}$ correctly, <b>or</b>                                                                                   |  |  |  |
|              | • states a domain of g <sup>-1</sup> which is correctly followed through on the values shown in their                                  |  |  |  |
|              | range in part (b)<br>then give special case (SC) M1 M0 A0                                                                              |  |  |  |

| (a)        | $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$ $\overrightarrow{AB} = \overrightarrow{BD}, \  \overrightarrow{AB}  = 4$                                                                                                                                                                                                                                       |                                 |                  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|--|
|            | $\overrightarrow{AR} = \overrightarrow{RD}   \overrightarrow{AR}  = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                  |  |
| (a)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                  |  |
| ļ          | E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                  |  |
|            | or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$                                                                                                                                                                                                                                                                                           |                                 |                  |  |
|            | or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$                                                                                                                                                                                                                                                                                           |                                 |                  |  |
|            | $= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}  \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$ $\mathbf{or} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}  \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$ | M1                              | 3.1a             |  |
|            | $= \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix}  \text{or}  6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                              | 1.1b             |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                             |                  |  |
| <b>(b)</b> | $(a-2)^2 + (5-3)^2 + (-2-4)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                              | 1.1b             |  |
|            | $\left\{ \left  \overrightarrow{AC} \right  = 4 \Rightarrow \right\} (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$ $\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$                                                                                                                                                                                                                                                                                                 | dM1                             | 2.1              |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 1                             | 1 11.            |  |
|            | (as $a < 0 \Rightarrow$ ) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1                              | 1.1b             |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)                             | marks)           |  |
|            | Notes for Question 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2                              | marks)           |  |
| (a)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                  |  |
| M1:        | Complete <i>applied</i> strategy to find a vector expression for $\overrightarrow{OD}$                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                  |  |
| A1:        | See scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                  |  |
| Note:      | Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k})$                                                                                                                                                                                                                                     | $= (2\mathbf{i} + 3\mathbf{j})$ | $-4\mathbf{k}$ ) |  |
| Note:      | Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0                                                                                                                                                                                                                                                                                                                                             |                                 |                  |  |
| Note:      | Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position                                                                                                                                                                                                                                                                                                                                                                                                                                 | vectors is A                    | 0                |  |
| Note:      | Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working                                                                                                                                                                                                                                                                                                                                                                                                                                    | C.D.                            |                  |  |
| Note: (b)  | M1 can be implied for at least two correct components in their position vector                                                                                                                                                                                                                                                                                                                                                                                                                                            | of D                            |                  |  |
| M1:        | Finds the difference between $\overrightarrow{OA}$ and $\overrightarrow{OC}$ , then squares and adds each of the <b>Note:</b> Ignore labelling                                                                                                                                                                                                                                                                                                                                                                            | e 3 compone                     | ents             |  |
| dM1:       | Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC}  = 4$ an                                                                                                                                                                                                                                                                                                                                                                                                                        | d using a co                    | rrect            |  |
| uivii.     | method of solving their resulting quadratic equation to find at least one of $a = a$                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                  |  |
| Note:      | Condone at least one of either awrt 4.8 or awrt $-0.83$ for the dM mark                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •••                             |                  |  |
| A1:        | Obtains <b>only one</b> exact value, $a = 2 - 2\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                  |  |
| Note:      | Writing $a = 2 \pm 2\sqrt{2}$ , without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                  |  |
| Note:      | Allow exact alternatives such as $2-\sqrt{8}$ or $\frac{4-\sqrt{32}}{2}$ for A1, and isw can be a                                                                                                                                                                                                                                                                                                                                                                                                                         | pplied                          |                  |  |
| Note:      | Writing $a = -0.828$ , without reference to a correct exact value is A0                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                  |  |

| Questio               | on                                                                    | Sch                                                                                                                               | eme                                                                                                                                                  | Marks    | AOs    |
|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| 3                     |                                                                       |                                                                                                                                   | rational numbers, where $m \neq n$ ,                                                                                                                 |          |        |
| (a)                   | then $mn$ is also irrational."  E.g. $m = \sqrt{3}$ , $n = \sqrt{12}$ |                                                                                                                                   | M1                                                                                                                                                   | 1.1b     |        |
|                       |                                                                       | $\{mn=\}$ $\{nn=\}$                                                                                                               | $\sqrt{3}\left(\sqrt{12}\right) = 6$                                                                                                                 |          | 2.4    |
|                       |                                                                       | (                                                                                                                                 | not irrational or 6 is rational                                                                                                                      | A1       | 2.4    |
| (3.) (4.)             |                                                                       |                                                                                                                                   | 1                                                                                                                                                    | (2)      |        |
| (b)(i),<br>(ii) Way 1 |                                                                       | y =  x  + 3                                                                                                                       | V shaped graph {reasonably} symmetrical about the <i>y</i> -axis with vertical interpret (0, 3) or 3 stated or marked on the positive <i>y</i> -axis | B1       | 1.1b   |
|                       |                                                                       | $y =  x+3 $ $\{-3\} O$                                                                                                            | Superimposes the graph of $y =  x + 3 $ on top of the graph of $y =  x  + 3$                                                                         | M1       | 3.1a   |
|                       |                                                                       | $y =  x+3 $ {for corre<br>or when $x \ge 0$ , both grap                                                                           | r the same or above the graph of<br>sponding values of $x$ }<br>ohs are equal (or the same)<br>+ 3 is above the graph of $y =  x+3 $                 | A1       | 2.4    |
|                       |                                                                       | 7 6 1 7 11                                                                                                                        |                                                                                                                                                      | (3)      |        |
| (b)(ii)<br>Way 2      |                                                                       | Reason 1<br>When $x \ge 0$ , $ x  + 3 =  x + 3 $                                                                                  | Any one of Reason 1 or Reason 2                                                                                                                      | M1       | 3.1a   |
|                       |                                                                       | Reason 2<br>When $x < 0$ , $ x  + 3 >  x + 3 $                                                                                    | Both Reason 1 and Reason 2                                                                                                                           | A1       | 2.4    |
|                       |                                                                       | • • • • • •                                                                                                                       |                                                                                                                                                      | (5       | marks) |
|                       |                                                                       | Notes fo                                                                                                                          | or Question 3                                                                                                                                        |          |        |
| (a)                   | Cto                                                                   | to a consequence of the second constant                                                                                           | hans that will discusses the atotamant                                                                                                               |          |        |
| M1:                   |                                                                       | tes or uses any pair of <i>different</i> numbers. $\sqrt{3}$ , $\sqrt{12}$ ; $\sqrt{2}$ , $\sqrt{8}$ ; $\sqrt{5}$ , $-\sqrt{5}$ ; |                                                                                                                                                      |          |        |
| A1:                   |                                                                       |                                                                                                                                   | iven statement, with a correct conclus                                                                                                               | sion     |        |
| Note:                 |                                                                       | riting $(3e)\left(\frac{4}{5e}\right) = \frac{12}{5} \Rightarrow \text{ untrue is suff}$                                          |                                                                                                                                                      |          |        |
| (b)(i)                |                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                             |                                                                                                                                                      |          |        |
| B1:                   | See                                                                   | escheme                                                                                                                           |                                                                                                                                                      |          |        |
| (b)(ii)               |                                                                       |                                                                                                                                   |                                                                                                                                                      |          |        |
| M1:                   |                                                                       | constructing a method of comparing                                                                                                |                                                                                                                                                      |          |        |
| A1:                   |                                                                       | plains fully why $ x  + 3 \ge  x + 3 $ . See                                                                                      |                                                                                                                                                      |          |        |
| Note:                 | Do                                                                    | not allow either $x > 0$ , $ x  + 3 \ge  x + 3 $                                                                                  | $3 \mid \text{ or } x \ge 0, \  x  + 3 \ge  x + 3  \text{ as a valid}$                                                                               | l reason |        |
| Note                  | <i>x</i> =                                                            | = 0 (or where necessary $x = -3$ ) need                                                                                           | d to be considered in their solutions fo                                                                                                             | r A1     |        |
| Note:                 | Do                                                                    | not allow an incorrect statement such                                                                                             | h as $x \le 0$ , $ x  + 3 >  x + 3 $ for A1                                                                                                          |          |        |

|                  | Notes for Question 3 Continued                                                                                                                                                                                                                  |    |      |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|--|
| (b)(ii)          |                                                                                                                                                                                                                                                 |    |      |  |
| Note:            | Allow M1A1 for $x > 0$ , $ x  + 3 =  x + 3 $ and for $x \le 0$ , $ x  + 3 \ge  x + 3  \ge$                                                                                                                                                      |    |      |  |
| Note:            | Allow M1 for any of  • $x$ is positive, $ x +3 =  x+3 $ • $x$ is negative, $ x +3 >  x+3 $ • $x > 0$ , $ x +3 =  x+3 $ • $x \le 0$ , $ x +3 \ge  x+3 $ • $x \le 0$ , $ x +3$ and $ x+3 $ are equal  • $x \ge 0$ , $ x +3$ and $ x+3 $ are equal |    |      |  |
|                  | <ul> <li>when x≥0, both graphs are equal</li> <li>for positive values  x +3 and  x+3  are the same</li> <li>Condone for M1</li> <li>x≤0,  x +3&gt; x+3 </li> <li>x&lt;0,  x +3≥ x+3 </li> </ul>                                                 |    |      |  |
| (b)(ii)<br>Way 3 | • For $x > 0$ , $ x  + 3 =  x + 3 $<br>• For $-3 < x < 0$ , as $ x  + 3 > 3$ and $\{0 < \}  x + 3  < 3$ , then $ x  + 3 >  x + 3 $                                                                                                              | M1 | 3.1a |  |
|                  | • For $x \le -3$ , as $ x  + 3 = -x + 3$ and $ x + 3  = -x - 3$ ,<br>then $ x  + 3 >  x + 3 $                                                                                                                                                   | A1 | 2.4  |  |

| Question     | Scheme                                                                                                                                                        | Marks     | AOs         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 4            | (i) $\sum_{r=1}^{16} (3+5r+2^r) = 131798$ ; (ii) $u_1, u_2, u_3,, : u_{n+1} = \frac{1}{u_n}, u_1 = \frac{2}{3}$                                               |           |             |
| (i)<br>Way 1 | $\left\{ \sum_{r=1}^{16} \left( 3 + 5r + 2^r \right) = \right\} \sum_{r=1}^{16} \left( 3 + 5r \right) + \sum_{r=1}^{16} \left( 2^r \right)$                   | M1        | 3.1a        |
|              | $= \frac{16}{2}(2(8)+15(5)) + \frac{2(2^{16}-1)}{2}$                                                                                                          | M1        | 1.1b        |
|              | $=\frac{1}{2}(2(8)+15(5))+\frac{1}{2-1}$                                                                                                                      | M1        | 1.1b        |
|              | = 728 + 131 070 = 131 798 *                                                                                                                                   | A1*       | 2.1         |
|              |                                                                                                                                                               | (4)       |             |
| (i)<br>Way 2 | $\left\{ \sum_{r=1}^{16} \left( 3 + 5r + 2^r \right) = \right\} \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} \left( 5r \right) + \sum_{r=1}^{16} \left( 2^r \right)$   | M1        | 3.1a        |
|              | $= (3 \times 16) + \frac{16}{2}(2(5) + 15(5)) + \frac{2(2^{16} - 1)}{2 - 1}$                                                                                  | M1        | 1.1b        |
|              | $=(3\times10)+\frac{1}{2}(2(3)+13(3))+\frac{1}{2-1}$                                                                                                          | M1        | 1.1b        |
|              | =48+680+131070=131798 *                                                                                                                                       | A1*       | 2.1         |
|              |                                                                                                                                                               | (4)       |             |
|              | G 10 17 04 00 07 144 000 540 1077 0104                                                                                                                        | M1        | 3.1a        |
| (i)          | Sum = 10 + 17 + 26 + 39 + 60 + 97 + 166 + 299 + 560 + 1077 + 2106                                                                                             | M1        | 1.1b        |
| Way 3        | +4159 +8260 +16457 + 32846 +65619 = 131798 *                                                                                                                  | M1<br>A1* | 1.1b<br>2.1 |
|              |                                                                                                                                                               | (4)       | 2.1         |
| (ii)         | $\left\{u_1=\frac{2}{3}\right\},\ u_2=\frac{3}{2},\ u_3=\frac{2}{3},$ (can be implied by later working)                                                       | M1        | 1.1b        |
|              | $\left\{ \sum_{r=1}^{100} u_r = \right\} \ 50 \left(\frac{2}{3}\right) + 50 \left(\frac{3}{2}\right) \ \text{or} \ 50 \left(\frac{2}{3} + \frac{3}{2}\right)$ | M1        | 2.2a        |
|              | $= \frac{325}{3} \left( \text{or } 108\frac{1}{3} \text{ or } 108.3 \text{ or } \frac{1300}{12} \text{ or } \frac{650}{6} \right)$                            | A1        | 1.1b        |
|              |                                                                                                                                                               | (3)       |             |
|              |                                                                                                                                                               | (7        | marks)      |

|       | Notes for Question 4                                                                                                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   |                                                                                                                                                                                                                                                       |
| M1:   | Uses a correct methodical strategy to enable the given sum, $\sum_{r=1}^{16} (3+5r+2^r)$ to be found                                                                                                                                                  |
|       | Allow M1 for any of the following:                                                                                                                                                                                                                    |
|       | • expressing the given sum as either                                                                                                                                                                                                                  |
|       | $\sum_{r=1}^{16} (3+5r) + \sum_{r=1}^{16} (2^r),  \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r) + \sum_{r=1}^{16} (2^r) \text{ or } \sum_{r=1}^{16} 3 + 5 \sum_{r=1}^{16} r + \sum_{r=1}^{16} (2^r)$                                                       |
|       | • attempting to find both $\sum_{r=1}^{10} (3+5r)$ and $\sum_{r=1}^{10} (2^r)$ separately                                                                                                                                                             |
|       | • (3×16) and attempting to find both $\sum_{r=1}^{16} (5r)$ and $\sum_{r=1}^{16} (2^r)$ separately                                                                                                                                                    |
| M1:   | <b>Way 1:</b> Correct method for finding the sum of an AP with $a = 8$ , $d = 5$ , $n = 16$                                                                                                                                                           |
|       | Way 2: $(3\times16)$ and a correct method for finding the sum of an AP                                                                                                                                                                                |
| M1:   | Correct method for finding the sum of a GP with $a = 2$ , $r = 2$ , $n = 16$                                                                                                                                                                          |
| A1*:  | For all steps fully shown (with correct formulae used) leading to 131798                                                                                                                                                                              |
| Note: | <b>Way 1:</b> Give 2 <sup>nd</sup> M1 for writing $\sum_{r=1}^{16} (3+5r)$ as $\frac{16}{2} (8+83)$                                                                                                                                                   |
| Note: | <b>Way 2:</b> Give 2 <sup>nd</sup> M1 for writing $\sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r)$ as $48 + \frac{16}{2} (5+80)$ or $48 + 680$                                                                                                              |
| Note: | Give 3 <sup>rd</sup> M1 for writing $\sum_{r=1}^{16} (2^r)$ as $\frac{2(1-2^{16})}{1-2}$ or $2(2^{16}-1)$ or $(2^{17}-2)$                                                                                                                             |
| (i)   |                                                                                                                                                                                                                                                       |
| Way 3 |                                                                                                                                                                                                                                                       |
| M1:   | At least 6 correct terms and 16 terms shown                                                                                                                                                                                                           |
| M1:   | At least 10 correct terms (may not be 16 terms)                                                                                                                                                                                                       |
| M1:   | At least 15 correct terms (may not be 16 terms)                                                                                                                                                                                                       |
| A1*:  | All 16 terms correct <b>and</b> an indication that the sum is 131798                                                                                                                                                                                  |
| (ii)  |                                                                                                                                                                                                                                                       |
| M1:   | For some indication that the next two terms of this sequence are $\frac{3}{2}$ , $\frac{2}{3}$                                                                                                                                                        |
| M1:   | For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$ , o.e.                                                                                     |
| A1:   | Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or $108.3$ or an exact equivalent                                                                                                                                                                         |
| Note: | Allow 1 <sup>st</sup> M1 for $u_2 = \frac{3}{2}$ (or equivalent) <b>and</b> $u_3 = \frac{2}{3}$ (or equivalent)                                                                                                                                       |
| Note: | Allow 1 <sup>st</sup> M1 for the first 3 terms written as $\frac{2}{3}$ , $\frac{3}{2}$ , $\frac{2}{3}$ ,                                                                                                                                             |
| Note: | Allow 1 <sup>st</sup> M1 for the first 3 terms written as $\frac{2}{3}$ , $\frac{3}{2}$ , $\frac{2}{3}$ ,  Allow 1 <sup>st</sup> M1 for the 2 <sup>nd</sup> and 3 <sup>rd</sup> terms written as $\frac{3}{2}$ , $\frac{2}{3}$ , in the correct order |
| Note: | Condone $\frac{2}{3}$ written as 0.66 or awrt 0.67 for the 1 <sup>st</sup> M1 mark                                                                                                                                                                    |
| Note: | Give A0 for 108.3 or 108.333 without reference to $\frac{325}{3}$ or $108\frac{1}{3}$ or $108.3$                                                                                                                                                      |

| Questi | on Scheme                                                                                                                                                                                                                   | Marks                            | AOs                       |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|
| 5      | The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root                                                                                                                                                                 |                                  |                           |  |
| (a)    | $\{f(x) = 2x^3 + x^2 - 1 \Rightarrow\} f'(x) = 6x^2 + 2x$                                                                                                                                                                   | B1                               | 1.1b                      |  |
|        | $\left\{ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$                                                                             | M1                               | 1.1b                      |  |
|        | $= \frac{x_n (6x_n^2 + 2x_n) - (2x_n^3 + x_n^2 - 1)}{6x_n^2 + 2x_n} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n} *$                                                                                          | A1*                              | 2.1                       |  |
|        |                                                                                                                                                                                                                             | (3)                              |                           |  |
| (b)    | $\left\{x_{1} = 1 \Rightarrow\right\} x_{2} = \frac{4(1)^{3} + (1)^{2} + 1}{6(1)^{2} + 2(1)} \text{ or } x_{2} = 1 - \frac{2(1)^{3} + (1)^{2} - 1}{6(1)^{2} + 2(1)}$ $\Rightarrow x_{2} = \frac{3}{4}, x_{3} = \frac{2}{3}$ | M1                               | 1.1b                      |  |
|        | $\Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$                                                                                                                                                                        | A1                               | 1.1b                      |  |
|        |                                                                                                                                                                                                                             | (2)                              |                           |  |
| (c)    | Accept any reasons why the Newton-Raphson <b>method</b> cannot be used with $x_1 = 0$ which refer or <i>allude</i> to either the stationary point or the tangent. E.g.  • There is a stationary point at $x = 0$            | B1                               | 2.3                       |  |
|        | <ul> <li>Tangent to the curve (or y = 2x³ + x² - 1) would not meet the x-axis</li> <li>Tangent to the curve (or y = 2x³ + x² - 1) is horizontal</li> </ul>                                                                  |                                  |                           |  |
|        | • Tangent to the curve (or $y = 2x + x - 1$ ) is nonzontal                                                                                                                                                                  | (1)                              |                           |  |
|        |                                                                                                                                                                                                                             | (1)                              | marks)                    |  |
|        | Notes for Question 5                                                                                                                                                                                                        | (0                               | mai Ks)                   |  |
| (a)    | Troces for Question s                                                                                                                                                                                                       |                                  |                           |  |
| B1:    | States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} =$                                                                                                                         | $6x^2 + 2x)$                     |                           |  |
| M1:    | Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$                                                                                                                 |                                  |                           |  |
| A1*:   | A correct intermediate step of making a common denominator which leads to                                                                                                                                                   | the given ar                     | iswer                     |  |
| Note:  | Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$ ) in the NR formula                                                                                                                                     | $\left\{ x_{n+1} \right\} = x_n$ | $-\frac{f(x_n)}{f'(x_n)}$ |  |
| Note:  | Allow M1A1 for                                                                                                                                                                                                              |                                  |                           |  |
|        | • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$                                                          |                                  |                           |  |
| Note   | Condone $x = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x}$ for M1                                                                                                                                                                   |                                  |                           |  |
|        | Condone $x_n - \frac{2x_n^3 + x_n^2 - 1}{"6x_n^2 + 2x_n"}$ or $x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ (i.e. no $x_{n+1} =$ ) for M1                                                                                        |                                  |                           |  |
| Note   |                                                                                                                                                                                                                             |                                  |                           |  |
| Note:  |                                                                                                                                                                                                                             | $\frac{x^2-1}{2x_n}$             |                           |  |

|            | Notes for Question 5 Continued                                                                                                                                                                                                                                                                   |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (b)        |                                                                                                                                                                                                                                                                                                  |  |  |  |
| M1:        | An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or 0.75 o.e.                                                                                                                                                                     |  |  |  |
| Note:      | Allow one slip in substituting $x_1 = 1$                                                                                                                                                                                                                                                         |  |  |  |
| A1:        | $x_2 = \frac{3}{4}$ and $x_3 = \frac{2}{3}$                                                                                                                                                                                                                                                      |  |  |  |
| Note:      | Condone $x_2 = \frac{3}{4}$ and $x_3 = \text{awrt } 0.667 \text{ for A} 1$                                                                                                                                                                                                                       |  |  |  |
| Note:      | Condone $\frac{3}{4}$ , $\frac{2}{3}$ listed in a correct order ignoring subscripts                                                                                                                                                                                                              |  |  |  |
| (c)        |                                                                                                                                                                                                                                                                                                  |  |  |  |
| <b>B1:</b> | See scheme                                                                                                                                                                                                                                                                                       |  |  |  |
| Note:      | Give B0 for the following isolated reasons: e.g.  • You cannot divide by 0  • The fraction (or the NR formula) is undefined at $x = 0$ • At $x = 0$ , $f'(x_1) = 0$ • $x_1$ cannot be 0  • $6x^2 + 2x$ cannot be 0  • the denominator is 0 which cannot happen  • if $x_1 = 0$ , $6x^2 + 2x = 0$ |  |  |  |

| Questi     | on Scheme                                                                                                                                                                                                        | Marks             | AOs    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| 6          | (a) $f(x) = -3x^3 + 8x^2 - 9x + 10, x \in \mathbb{R}$                                                                                                                                                            |                   |        |
| (a)        | (i) $\{f(2) = -24 + 32 - 18 + 10 \Rightarrow\} f(2) = 0$                                                                                                                                                         | B1                | 1.1b   |
|            | (ii) $\{f(x) = \}$ $(x-2)(-3x^2+2x-5)$ or $(2-x)(3x^2-2x+5)$                                                                                                                                                     | M1                | 2.2a   |
|            | (ii) $\{1(x) = \}$ $(x - 2)(-3x + 2x - 3)$ or $(2 - x)(3x - 2x + 3)$                                                                                                                                             | A1                | 1.1b   |
| (1.)       | 26 04 02 10 0 (2 2)(24 2 2 5)                                                                                                                                                                                    | (3)               |        |
| <b>(b)</b> | $-3y^{6} + 8y^{4} - 9y^{2} + 10 = 0 \Rightarrow (y^{2} - 2)(-3y^{4} + 2y^{2} - 5) = 0$ Cives a partial explanation by                                                                                            |                   |        |
|            | Gives a partial explanation by<br>• explaining that $-3y^4 + 2y^2 - 5 = 0$ has no {real} solutions with a                                                                                                        |                   |        |
|            | reason, e.g. $b^2 - 4ac = (2)^2 - 4(-3)(-5) = -56 < 0$                                                                                                                                                           | M1                | 2.4    |
|            | _                                                                                                                                                                                                                |                   |        |
|            | • or stating that $y^2 = 2$ has 2 {real} solutions or $y = \pm \sqrt{2}$ {only}                                                                                                                                  |                   |        |
|            | Complete proof that the given equation has exactly two {real} solutions                                                                                                                                          | A1                | 2.1    |
|            |                                                                                                                                                                                                                  | (2)               |        |
| <b>(c)</b> | $3\tan^3\theta - 8\tan^2\theta + 9\tan\theta - 10 = 0$ ; $7\pi \le \theta < 10\pi$                                                                                                                               |                   |        |
|            | {Deduces that} there are 3 solutions                                                                                                                                                                             | B1                | 2.2a   |
|            |                                                                                                                                                                                                                  | (1)               |        |
|            | Natas fau Overbieu C                                                                                                                                                                                             | (6                | marks) |
| (a)(i)     | Notes for Question 6                                                                                                                                                                                             |                   |        |
| B1:        | f(2) = 0 or 0 stated by itself in part (a)(i)                                                                                                                                                                    |                   |        |
| (a)(ii)    | - (-) of o stated by listen in part (a)(i)                                                                                                                                                                       |                   |        |
| M1:        | Deduces that $(x-2)$ or $(2-x)$ is a factor and attempts to find the other quad-                                                                                                                                 | Iratic factor l   | oy     |
|            | • using long division to obtain either $\pm 3x^2 \pm kx +, k = \text{value} \neq 0$ or                                                                                                                           |                   |        |
|            | ±3 $x^2 \pm \alpha x + \beta$ , $\beta$ = value $\neq 0$ , $\alpha$ can be 0                                                                                                                                     |                   |        |
|            | • factorising to obtain their quadratic factor in the form $(\pm 3x^2 \pm kx \pm c)$ ,                                                                                                                           | k = value ≠ 0     | ,      |
|            | c can be 0, or in the form $(\pm 3x^2 \pm \alpha x \pm \beta)$ , $\beta = \text{value} \neq 0$ , $\alpha$ can be 0                                                                                               | value / o         | ,      |
| A1:        | c can be 0, or in the form $(\pm 3x \pm \alpha x \pm \beta)$ , $\beta = \text{value} \neq 0$ , $\alpha$ can be 0<br>$(x-2)(-3x^2+2x-5)$ , $(2-x)(3x^2-2x+5)$ or $-(x-2)(3x^2-2x+5)$ stated together as a product |                   |        |
| (b)        | (x-2)(-3x+2x-3), $(2-x)(3x-2x+3)$ or $-(x-2)(3x-2x+3)$ stated together as a product                                                                                                                              |                   |        |
| M1:        | See scheme                                                                                                                                                                                                       |                   |        |
| <b>A1:</b> | See scheme. Proof must be correct <i>with no errors</i> , e.g. giving an incorrect discriminant value                                                                                                            |                   |        |
| Note:      | Correct calculation e.g. $(2)^2 - 4(-3)(-5)$ , $4-60$ or $-56$ must be given for the first explanation                                                                                                           |                   |        |
| Note:      | Note that M1 can be allowed for                                                                                                                                                                                  |                   |        |
|            | • a correct follow through calculation for the discriminant of their "-3]                                                                                                                                        |                   |        |
|            | which would lead to a value $< 0$ together with an explanation that $-$ .                                                                                                                                        | $3y^4 + 2y^2 - 5$ | =0 has |
|            | no {real} solutions                                                                                                                                                                                              |                   |        |
| Notes      | • or for the omission of < 0                                                                                                                                                                                     |                   |        |
| Note:      | < 0 must also been stated in a discriminant method for A1  Do not allow A1 for incorrect working, e.g. $(2)^2 - 4(-3)(-5) = -54 < 0$                                                                             |                   |        |
|            |                                                                                                                                                                                                                  | For M1            |        |
| Note:      | $y^2 = 2 \Rightarrow y = \pm 2$ , so 2 solutions is not allowed for A1, but can be condoned a                                                                                                                    | or M1             |        |
| Note:      | Using the formula on $-3y^4 + 2y^2 - 5 = 0$ or $-3x^2 + 2x - 5 = 0$                                                                                                                                              |                   |        |
|            | gives $y^2$ or $x = \frac{-2 \pm \sqrt{-56}}{-6}$ or $\frac{-1 \pm \sqrt{-14}}{-3}$                                                                                                                              |                   |        |

|            | Notes for Question 6 Continued                                                                                                                                               |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Note:      | Completing the square on $-3x^2 + 2x - 5 = 0$                                                                                                                                |  |  |
|            | gives $x^2 - \frac{2}{3}x + \frac{5}{3} = 0 \Rightarrow \left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + \frac{5}{3} = 0 \Rightarrow x = \frac{1}{3} \pm \sqrt{\frac{-14}{9}}$ |  |  |
| Note:      | Do not recover work for part (b) in part (c)                                                                                                                                 |  |  |
| (c)        |                                                                                                                                                                              |  |  |
| <b>B1:</b> | See scheme                                                                                                                                                                   |  |  |
| Note:      | Give B0 for stating $\theta$ = awrt 23.1, awrt 26.2, awrt 29.4 <b>without</b> reference to 3 solutions                                                                       |  |  |

| Question     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheme                                                                                                          | Marks     | AOs          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 7            | (i) $4\sin x = \sec x$ , $0 \le x < \frac{\pi}{2}$ ; (ii) $5\sin \theta - 5\cos \theta = 2$ , $0 \le \theta < 360^{\circ}$                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |              |
| (i)<br>Way 1 | For $\sec x = \frac{1}{\cos x}$                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | B1        | 1.2          |
|              | $\left\{4\sin x = \sec x \Longrightarrow\right\} 4\sin x c$                                                                                                                                                                                                                                                                                                                                                                              | $\cos x = 1 \Rightarrow 2\sin 2x = 1 \Rightarrow \sin 2x = \frac{1}{2}$                                         | M1        | 3.1a         |
|              | $x = \frac{1}{2}\arcsin\left(\frac{1}{2}\right)$ or $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{2}\left(\pi - \arcsin\left(\frac{1}{2}\right)\right) \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}$ | dM1<br>A1 | 1.1b<br>1.1b |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | (4)       |              |
| (i)<br>Way 2 | For                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sec x = \frac{1}{\cos x}$                                                                                     | B1        | 1.2          |
|              | $\left\{4\sin x = \sec x \Longrightarrow\right\} 4\sin x$                                                                                                                                                                                                                                                                                                                                                                                | $1 x \cos x = 1 \Rightarrow 16 \sin^2 x \cos^2 x = 1$                                                           |           |              |
|              | $16\sin^2 x (1 - \sin^2 x) = 1$                                                                                                                                                                                                                                                                                                                                                                                                          | $16(1-\cos^2 x)\cos^2 x = 1$                                                                                    |           |              |
|              | $16\sin^4 x - 16\sin^2 x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                        | $16\cos^4 x - 16\cos^2 x + 1 = 0$                                                                               | M1        | 3.1a         |
|              | $\sin^2 x \text{ or } \cos^2 x = \frac{16 \pm \sqrt{19}}{32}$                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\overline{2}}{4} = \frac{2 \pm \sqrt{3}}{4} \text{ or } 0.933, 0.066$                                    |           |              |
|              | $(\sqrt{2\pm\sqrt{3}})$                                                                                                                                                                                                                                                                                                                                                                                                                  | $(2\pm\sqrt{3})$ $\pi$ $5\pi$                                                                                   | dM1       | 1.1b         |
|              | $x = \arcsin\left(\sqrt{\frac{4}{4}}\right)$ or $x$                                                                                                                                                                                                                                                                                                                                                                                      | $x = \arccos\left(\sqrt{\frac{2 \pm \sqrt{3}}{4}}\right) \Rightarrow x = \frac{\pi}{12}, \frac{5\pi}{12}$       | A1        | 1.1b         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | (4)       |              |
| (ii)         | (ii) Complete strategy, i.e.  • Expresses $5\sin\theta - 5\cos\theta = 2$ in the form $R\sin(\theta - \alpha) = 2$ , finds both $R$ and $\alpha$ , and proceeds to $\sin(\theta - \alpha) = k$ , $ k  < 1$ , $k \ne 0$ • Applies $(5\sin\theta - 5\cos\theta)^2 = 2^2$ , followed by applying both $\cos^2\theta + \sin^2\theta = 1$ and $\sin 2\theta = 2\sin\theta\cos\theta$ to proceed to $\sin 2\theta = k$ , $ k  < 1$ , $k \ne 0$ |                                                                                                                 | M1        | 3.1a         |
|              | $R = \sqrt{50}$ $\tan \alpha = 1 \Rightarrow \alpha = 45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                        | M1                                                                                                              | 1.1b      |              |
|              | $\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$                                                                                                                                                                                                                                                                                                                                                                                          | $\sin 2\theta = \frac{21}{25}$                                                                                  | A1        | 1.1b         |
|              | dependent                                                                                                                                                                                                                                                                                                                                                                                                                                | on the first M mark                                                                                             |           |              |
|              | e.g. $\theta = \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                     | e.g. $\theta = \frac{1}{2} \left( \arcsin \left( \frac{21}{25} \right) \right)$                                 | dM1       | 1.1b         |
|              | $\theta = \text{awrt}$                                                                                                                                                                                                                                                                                                                                                                                                                   | 61.4°, awrt 208.6°                                                                                              | A1        | 2.1          |
|              | <b>Note:</b> Working in radians does not affect any of the first 4 marks                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |           |              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | (5)       | ma=          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | (9        | marks)       |

| Quest         | ion                                                                                                                                                                                                                                                                                                                                                    | Scheme                                                                                                                                                                                                                                                                    | Marks       | AOs     |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--|
| 7             |                                                                                                                                                                                                                                                                                                                                                        | (ii) $5\sin\theta - 5\cos\theta = 2$ , $0 \le \theta < 360^{\circ}$                                                                                                                                                                                                       |             |         |  |
| (ii)<br>Alt 1 | (ii) Complete strategy, i.e.  • Attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta - 2)^2 = (5\cos\theta)^2$ followed by applying $\cos^2\theta + \sin^2\theta = 1$ and solving a quadratic equation in either $\sin\theta$ or $\cos\theta$ to give at least one of $\sin\theta = k$ or $\cos\theta = k$ , $ k  < 1$ , $k \ne 0$ |                                                                                                                                                                                                                                                                           | M1          | 3.1a    |  |
|               |                                                                                                                                                                                                                                                                                                                                                        | e.g. $25\sin^2\theta = 4 + 20\cos\theta + 25\cos^2\theta$<br>$\Rightarrow 25(1-\cos^2\theta) = 4 + 20\cos\theta + 25\cos^2\theta$<br>or e.g. $25\sin^2\theta - 20\sin\theta + 4 = 25\cos^2\theta$<br>$\Rightarrow 25\sin^2\theta - 20\sin\theta + 4 = 25(1-\sin^2\theta)$ | - M1        | 1.1b    |  |
|               |                                                                                                                                                                                                                                                                                                                                                        | $50\cos^2\theta + 20\cos\theta - 21 = 0$ $50\sin^2\theta - 20\sin\theta - 21 = 0$                                                                                                                                                                                         |             |         |  |
|               |                                                                                                                                                                                                                                                                                                                                                        | $\cos \theta = \frac{-20 \pm \sqrt{4600}}{100}$ , o.e. $\sin \theta = \frac{20 \pm \sqrt{4600}}{100}$ , o.e.                                                                                                                                                              | A1          | 1.1b    |  |
|               |                                                                                                                                                                                                                                                                                                                                                        | dependent on the first M mark  e.g. $\theta = \arccos\left(\frac{-2 + \sqrt{46}}{10}\right)$ e.g. $\theta = \arcsin\left(\frac{2 + \sqrt{46}}{10}\right)$                                                                                                                 | dM1         | 1.1b    |  |
|               |                                                                                                                                                                                                                                                                                                                                                        | $\theta$ = awrt 61.4°, awrt 208.6°                                                                                                                                                                                                                                        | A1          | 2.1     |  |
|               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           | (5)         |         |  |
| (i)           |                                                                                                                                                                                                                                                                                                                                                        | Notes for Question 7                                                                                                                                                                                                                                                      |             |         |  |
| B1:           | For                                                                                                                                                                                                                                                                                                                                                    | recalling that $\sec x = \frac{1}{\cos x}$                                                                                                                                                                                                                                |             |         |  |
| M1:           | <ul> <li>Correct strategy of</li> <li>Way 1: applying sin 2x = 2sin x cos x and proceeding to sin 2x = k,  k  ≤ 1, k ≠ 0</li> <li>Way 2: squaring both sides, applying cos² x + sin² x = 1 and solving a quadratic equation in either sin² x or cos² x to give sin² x = k or cos² x = k,  k  ≤ 1, k ≠ 0</li> </ul>                                     |                                                                                                                                                                                                                                                                           |             |         |  |
| dM1:          | Use                                                                                                                                                                                                                                                                                                                                                    | Uses the correct order of operations to find at least one value for x in either radians or degrees                                                                                                                                                                        |             |         |  |
| A1:           | Clear reasoning to achieve both $x = \frac{\pi}{12}$ , $\frac{5\pi}{12}$ and no other values in the range $0 \le x < \frac{\pi}{2}$                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |             |         |  |
| Note:         | Give dM1 for $\sin 2x = \frac{1}{2} \Rightarrow$ any of $\frac{\pi}{12}$ , $\frac{5\pi}{12}$ , 15°, 75°, awrt 0.26 or awrt 1.3                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           |             |         |  |
| Note:         |                                                                                                                                                                                                                                                                                                                                                        | The special case, SC B1M0M0A0 for writing down any of $\frac{\pi}{12}$ , $\frac{5\pi}{12}$ , 15° or $\frac{\pi}{12}$                                                                                                                                                      | 75° with no | working |  |

|       | Notes for Question 7 Continued                                                                                                                                                                |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (ii)  |                                                                                                                                                                                               |  |  |  |
| M1:   | See scheme                                                                                                                                                                                    |  |  |  |
| Note: | Alternative strategy: Expresses $5\sin\theta - 5\cos\theta = 2$ in the form $R\cos(\theta + \alpha) = -2$ ,                                                                                   |  |  |  |
|       | finds both R and $\alpha$ , and proceeds to $\cos(\theta + \alpha) = k$ , $ k  < 1$ , $k \ne 0$                                                                                               |  |  |  |
| M1:   | Either                                                                                                                                                                                        |  |  |  |
|       | • uses $R\sin(\theta - \alpha)$ to find the values of both R and $\alpha$                                                                                                                     |  |  |  |
|       | • attempts to apply $(5\sin\theta - 5\cos\theta)^2 = 2^2$ , uses $\cos^2\theta + \sin^2\theta = 1$ and proceeds to find an                                                                    |  |  |  |
|       | equation of the form $\pm \lambda \pm \mu \sin 2\theta = \pm \beta$ or $\pm \mu \sin 2\theta = \pm \beta$ ; $\mu \neq 0$                                                                      |  |  |  |
|       | • attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta - 2)^2 = (5\cos\theta)^2$ and                                                                                      |  |  |  |
|       | uses $\cos^2 \theta + \sin^2 \theta = 1$ to form an equation in $\cos \theta$ only or $\sin \theta$ only                                                                                      |  |  |  |
| A1:   | For $\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$ , o.e., $\cos(\theta + 45^\circ) = -\frac{2}{\sqrt{50}}$ , o.e. or $\sin 2\theta = \frac{21}{25}$ , o.e.                                  |  |  |  |
|       | or $\cos \theta = \frac{-20 \pm \sqrt{4600}}{100}$ , o.e. or $\cos \theta = \text{awrt } 0.48$ , $\text{awrt } -0.88$                                                                         |  |  |  |
|       | or $\sin \theta = \frac{20 \pm \sqrt{4600}}{100}$ , o.e., or $\sin \theta = \text{awrt } 0.88$ , $\text{awrt } -0.48$                                                                         |  |  |  |
| Note: | $\sin(\theta - 45^{\circ})$ , $\cos(\theta + 45^{\circ})$ , $\sin 2\theta$ must be made the subject for A1                                                                                    |  |  |  |
| dM1:  | dependent on the first M mark                                                                                                                                                                 |  |  |  |
|       | Uses the correct order of operations to find at least one value for x in either degrees or radians                                                                                            |  |  |  |
| Note: | dM1 can also be given for $\theta = 180^{\circ} - \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$ or $\theta = \frac{1}{2}\left(180^{\circ} - \arcsin\left(\frac{21}{25}\right)\right)$ |  |  |  |
| A1:   | Clear reasoning to achieve both $\theta$ = awrt 61.4°, awrt 208.6° and no other values in                                                                                                     |  |  |  |
|       | the range $0 \le \theta < 360^{\circ}$                                                                                                                                                        |  |  |  |
| Note: | Give M0M0A0M0A0 for writing down any of $\theta$ = awrt 61.4°, awrt 208.6° with no working                                                                                                    |  |  |  |
| Note: | Alternative solutions: (to be marked in the same way as Alt 1):                                                                                                                               |  |  |  |
|       | • $5\sin\theta - 5\cos\theta = 2 \implies 5\tan\theta - 5 = 2\sec\theta \implies (5\tan\theta - 5)^2 = (2\sec\theta)^2$                                                                       |  |  |  |
|       | $\Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4\sec^2\theta \Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4(1+\tan^2\theta)$                                                           |  |  |  |
|       | $\Rightarrow 21\tan^2\theta - 50\tan\theta + 21 = 0 \Rightarrow \tan\theta = \frac{50 \pm \sqrt{736}}{42} = \frac{25 \pm 2\sqrt{46}}{21} = 1.8364, 0.5445$                                    |  |  |  |
|       | $\Rightarrow \theta = \text{awrt } 61.4^{\circ}, \text{ awrt } 208.6^{\circ} \text{ only}$                                                                                                    |  |  |  |
|       | • $5\sin\theta - 5\cos\theta = 2 \implies 5 - 5\cot\theta = 2\csc\theta \implies (5 - 5\cot\theta)^2 = (2\csc\theta)^2$                                                                       |  |  |  |
|       | $\Rightarrow 25 - 50\cot\theta + 25\cot^2\theta = 4\csc^2\theta \Rightarrow 25 - 50\cot\theta + 25\cot^2\theta = 4(1 + \cot^2\theta)$                                                         |  |  |  |
|       | $\Rightarrow 21\cot^2\theta - 50\cot\theta + 21 = 0 \Rightarrow \cot\theta = \frac{50 \pm \sqrt{736}}{42} = \frac{25 \pm 2\sqrt{46}}{21} = 1.8364, 0.5445$                                    |  |  |  |
|       | $\Rightarrow \theta = \text{awrt } 61.4^{\circ}, \text{ awrt } 208.6^{\circ} \text{ only}$                                                                                                    |  |  |  |

| Question     | Scheme                                                                                                                                                                                                                                                                                                                                                                                           | Marks | AOs      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 8 (a)        | $H = Ax(40 - x)$ {or $H = Ax(x - 40)$ }                                                                                                                                                                                                                                                                                                                                                          | M1    | 3.3      |
| Way 1        | $x = 20, H = 12 \Rightarrow 12 = A(20)(40 - 20) \Rightarrow A = \frac{3}{100}$                                                                                                                                                                                                                                                                                                                   | dM1   | 3.1b     |
|              | $H = \frac{3}{100}x(40-x) \text{ or } H = -\frac{3}{100}x(x-40)$                                                                                                                                                                                                                                                                                                                                 | A1    | 1.1b     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                  | (3)   |          |
| (a)          | $H = 12 - \lambda(x - 20)^2$ {or $H = 12 + \lambda(x - 20)^2$ }                                                                                                                                                                                                                                                                                                                                  | M1    | 3.3      |
| Way 2        | $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^2 \Rightarrow \lambda = \frac{3}{100}$                                                                                                                                                                                                                                                                                                      | dM1   | 3.1b     |
|              | $H = 12 - \frac{3}{100}(x - 20)^2$                                                                                                                                                                                                                                                                                                                                                               | A1    | 1.1b     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                  | (3)   |          |
| (a)<br>Way 3 | $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$ )<br><b>Both</b> $x = 0$ , $H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$<br><b>and either</b> $x = 40$ , $H = 0 \Rightarrow 0 = 1600a + 40b$<br><b>or</b> $x = 20$ , $H = 12 \Rightarrow 12 = 400a + 20b$<br><b>or</b> $\frac{-b}{2a} = 20$ {\$\Rightarrow\$ b = -40a}                                                                     | M1    | 3.3      |
|              | $b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ so $b = -40(-0.03) = 1.2$                                                                                                                                                                                                                                                                                                      | dM1   | 3.1b     |
|              | $H = -0.03x^2 + 1.2x$                                                                                                                                                                                                                                                                                                                                                                            | A 1   | 1 11     |
|              | H = -0.03x + 1.2x                                                                                                                                                                                                                                                                                                                                                                                | A1    | 1.1b     |
| <i>a</i> >   |                                                                                                                                                                                                                                                                                                                                                                                                  | (3)   |          |
| (b)          | $\{H = 3 \Rightarrow\} \ 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ or $\{H = 3 \Rightarrow\} \ 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$                                                                                                                                                                                                                  | M1    | 3.4      |
|              | e.g. $x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$                                                                                                                                                                                                                                                                                                                | dM1   | 1.1b     |
|              | $\left\{\text{chooses } 20 + \sqrt{300} \Rightarrow\right\}$ greatest distance = awrt 37.3 m                                                                                                                                                                                                                                                                                                     | A1    | 3.2a     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                  | (3)   |          |
| (c)          | Gives a limitation of the model. Accept e.g.  the ground is horizontal  the ball needs to be kicked from the ground  the ball is modelled as a particle  the horizontal bar needs to be modelled as a line  there is no wind or air resistance on the ball  there is no spin on the ball  no obstacles in the trajectory (or path) of the ball  the trajectory of the ball is a perfect parabola | B1    | 3.5b     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                  | (1)   |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                  | (     | 7 marks) |

|       | Notes for Question 8                                                                                                                               |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (a)   |                                                                                                                                                    |  |
| M1:   | Translates the situation given into a suitable equation for the model. E.g.                                                                        |  |
|       | <b>Way 1:</b> {Uses $(0,0)$ and $(40,0)$ to write} $H = Ax(40-x)$ o.e. {or $H = Ax(x-40)$ }                                                        |  |
|       | <b>Way 2:</b> {Uses $(20, 12)$ to write} $H = 12 - \lambda(x - 20)^2$ or $H = 12 + \lambda(x - 20)^2$                                              |  |
|       | <b>Way 3:</b> Writes $H = ax^2 + bx + c$ , and uses $(0, 0)$ to deduce $c = 0$ and an attempt at using either                                      |  |
|       | (40, 0) or (20, 12)                                                                                                                                |  |
|       | <b>Special Case:</b> Allow SC M1dM0A0 for not deducing $c = 0$ but attempting to apply both $(40, 0)$                                              |  |
|       | and (20, 12)                                                                                                                                       |  |
| dM1:  | Applies a complete strategy with appropriate constraints to find all constants in their model.                                                     |  |
|       | Way 1: Uses $(20, 12)$ on their model and finds $A =$                                                                                              |  |
|       | <b>Way 2:</b> Uses either $(40,0)$ or $(0,0)$ on their model to find $\lambda =$                                                                   |  |
|       | Way 3: Uses $(40,0)$ and $(20,12)$ on their model to find $a =$ and $b =$                                                                          |  |
| A1:   | Finds a correct equation linking $H$ to $x$                                                                                                        |  |
|       | E.g. $H = \frac{3}{100}x(40-x)$ , $H = 12 - \frac{3}{100}(x-20)^2$ or $H = -0.03x^2 + 1.2x$                                                        |  |
|       | 100                                                                                                                                                |  |
| Note: | Condone writing y in place of H for the M1 and dM1 marks.                                                                                          |  |
| Note: | Give final A0 for $y = -0.03x^2 + 1.2x$                                                                                                            |  |
| Note: | Give special case M1dM0A0 for writing down any of $H = 12 - (x - 20)^2$ or $H = x(40 - x)$                                                         |  |
|       | or $H = x(x-40)$                                                                                                                                   |  |
| Note: | Give M1 dM1 for finding $-0.03x^2 + 1.2x$ or $a = -0.03, b = 1.2, c = 0$ in an implied                                                             |  |
|       | $ax^2 + bx$ or $ax^2 + bx + c$ (with no indication of $H =$ )                                                                                      |  |
| (b)   |                                                                                                                                                    |  |
| M1:   | Substitutes $H = 3$ into their quadratic equation and proceeds to obtain a 3TQ                                                                     |  |
|       | or a quadratic in the form $(x \pm \alpha)^2 = \beta$ ; $\alpha$ , $\beta \neq 0$                                                                  |  |
| Note: | E.g. $1.2x - 0.03x^2 = 3$ or $40x - x^2 = 100$ are acceptable for the 1 <sup>st</sup> M mark                                                       |  |
| Note: | Give M0 dM0 A0 for (their $A$ ) $x^2 = 3 \Rightarrow x =$ or their (their $A$ ) $x^2 + (\text{their } k) = 3 \Rightarrow x =$                      |  |
| dM1:  | Correct method of solving their quadratic equation to give at least one solution                                                                   |  |
| A1:   | Interprets their solution in the original context by selecting the larger correct value <i>and states</i>                                          |  |
|       | correct units for their value. E.g. Accept awrt 37.3 m or $(20 + \sqrt{300})$ m or $(20 + 10\sqrt{3})$ m                                           |  |
| Note: | Condone the use of inequalities for the method marks in part (b)                                                                                   |  |
| (c):  |                                                                                                                                                    |  |
| B1:   | See scheme                                                                                                                                         |  |
| Note: | Give no credit for the following reasons                                                                                                           |  |
|       | <ul> <li>H (or the height of ball) is negative when x &gt; 40</li> <li>Review of the ball should be considered after hitting the ground</li> </ul> |  |
|       | <ul> <li>Bounce of the ball should be considered after hitting the ground</li> <li>Model will not be true for a different rugby ball</li> </ul>    |  |
|       | Ball may not be kicked in the same way each time                                                                                                   |  |
|       | - Dan may not be kicked in the same way each time                                                                                                  |  |

| Question                              |                                                                                                                                                                                                                  | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks                                   | AOs     |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|--|--|
| 9                                     |                                                                                                                                                                                                                  | $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ ; as $h \to 0$ , $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |         |  |  |
| $\frac{\cos(\theta+h)-\cos\theta}{h}$ |                                                                                                                                                                                                                  | $\frac{\cos(\theta+h)-\cos\theta}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                                      | 2.1     |  |  |
|                                       |                                                                                                                                                                                                                  | $= \frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{\cos\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                                      | 1.1b    |  |  |
|                                       |                                                                                                                                                                                                                  | $=\frac{a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{000}a_{0$ | A1                                      | 1.1b    |  |  |
|                                       |                                                                                                                                                                                                                  | $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |         |  |  |
|                                       |                                                                                                                                                                                                                  | As $h \to 0$ , $-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \to -1\sin \theta + 0\cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dM1                                     | 2.1     |  |  |
|                                       |                                                                                                                                                                                                                  | so $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1*                                     | 2.5     |  |  |
|                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (5)                                     |         |  |  |
|                                       |                                                                                                                                                                                                                  | Notes for Question Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5                                      | marks)  |  |  |
|                                       |                                                                                                                                                                                                                  | Notes for Question 9 $\cos(\theta + h) - \cos \theta \qquad \cos(\theta + \delta \theta) - \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |         |  |  |
| B1:                                   | Giv                                                                                                                                                                                                              | tes the correct fraction such as $\frac{\cos(\theta+h)-\cos\theta}{h}$ or $\frac{\cos(\theta+\delta\theta)-\cos\theta}{\delta\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |         |  |  |
|                                       | Alle                                                                                                                                                                                                             | ow $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e. <b>Note:</b> $\cos(\theta+h)$ or $\cos(\theta+\delta\theta)$ may be expand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nded                                    |         |  |  |
| M1:                                   | Use                                                                                                                                                                                                              | es the compound angle formula for $\cos(\theta+h)$ to give $\cos\theta\cos h \pm \sin\theta\sin\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n h                                     |         |  |  |
| A1:                                   | Acł                                                                                                                                                                                                              | Achieves $\frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{h}$ or equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |         |  |  |
| dM1:                                  | _                                                                                                                                                                                                                | dependent on both the B and M marks being awarded  Complete attempt to apply the given limits to the gradient of their chord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |         |  |  |
| Note:                                 | The                                                                                                                                                                                                              | They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$ , and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |         |  |  |
| A1*:                                  | cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |         |  |  |
| Note:                                 |                                                                                                                                                                                                                  | Acceptable responses for the final A mark include:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |         |  |  |
|                                       | $\bullet \frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = \lim_{h \to 0} \left( -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta \right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | ,       |  |  |
|                                       | • Gradient of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta$ . As $h \to 0$ , gradient of chord tends to                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | ends to |  |  |
|                                       |                                                                                                                                                                                                                  | the gradient of the curve, so derivative is $-\sin\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |         |  |  |
|                                       | • Gradient of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta$ . As $h \to 0$ , gradient of <i>curve</i> is $-\sin \theta$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |         |  |  |
| Note:                                 | Give final A0 for the following example which shows <i>no limiting arguments</i> :                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |         |  |  |
|                                       | when $h = 0$ , $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -\sin\theta + 0\cos\theta = -\sin\theta$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |         |  |  |
| Note:                                 | Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | these   |  |  |
| Note:                                 | In t                                                                                                                                                                                                             | his question $\delta\theta$ may be used in place of $h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |         |  |  |
| Note:                                 | Cor                                                                                                                                                                                                              | adone $f'(\theta)$ where $f(\theta) = \cos \theta$ or $\frac{dy}{d\theta}$ where $y = \cos \theta$ used in place of $\frac{dy}{d\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\mathrm{d}}{\theta}(\cos\theta)$ |         |  |  |

|       | Notes for Question 9 Continued                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note: | Condone $x$ used in place of $\theta$ if this is done consistently                                                                                                                                                                     |
| Note: | Give final A0 for                                                                                                                                                                                                                      |
|       | • $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left( -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \right) = -1\sin \theta + 0\cos \theta = -\sin \theta$                            |
|       | $\bullet  \frac{\mathrm{d}}{\mathrm{d}\theta} = \dots$                                                                                                                                                                                 |
|       | • Defining $f(x) = \cos \theta$ and applying $f'(x) =$                                                                                                                                                                                 |
|       | • $\frac{\mathrm{d}}{\mathrm{d}x}(\cos\theta)$                                                                                                                                                                                         |
| Note: | Give final A1 for a correct limiting argument in x, followed by $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$                                                                                                                          |
|       | e.g. $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left( -\frac{\sin h}{h} \sin x + \left(\frac{\cos h - 1}{h}\right) \cos x \right) = -1\sin x + 0\cos x = -\sin x$                                                  |
|       | $\Rightarrow \frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta$                                                                                                                                                            |
| Note: | Applying $h \to 0$ , $\sin h \to h$ , $\cos h \to 1$ to give e.g.                                                                                                                                                                      |
|       | $\begin{vmatrix} \lim_{h \to 0} \left( \frac{\cos \theta \cos h - \sin \theta \sin h - \cos \theta}{h} \right) = \left( \frac{\cos \theta (1) - \sin \theta (h) - \cos \theta}{h} \right) = \frac{-\sin \theta (h)}{h} = -\sin \theta$ |
|       | $h \to 0$ $\left(\frac{h}{h}\right) = \left(\frac{h}{h}\right) = \frac{-\sin\theta}{h}$                                                                                                                                                |
|       | is final M0 A0 for incorrect application of limits                                                                                                                                                                                     |
| Note: | $\lim_{h \to 0} \left( \frac{\cos \theta \cos h - \sin \theta \sin h - \cos \theta}{h} \right) = \lim_{h \to 0} \left( -\frac{\sin h}{h} \sin \theta + \left( \frac{\cos h - 1}{h} \right) \cos \theta \right)$                        |
|       |                                                                                                                                                                                                                                        |
|       | $\lim_{n \to \infty} \left( \frac{1}{n} \sin \theta + 0 \cos \theta \right) = \sin \theta $ So for not removing                                                                                                                        |
|       | $= \lim_{h \to 0} \left( -(1)\sin\theta + 0\cos\theta \right) = -\sin\theta. \text{ So for not removing } \lim_{h \to 0}$                                                                                                              |
|       | when the limit was taken is final A0                                                                                                                                                                                                   |
| Note: | Alternative Method: Considers $\frac{\cos(\theta+h)-\cos(\theta-h)}{(\theta+h)-(\theta-h)}$ which simplifies to $\frac{-2\sin\theta\sin h}{2h}$                                                                                        |

| Question | Scheme                                                                                                                                                                                                                                               |                                                                                                                                                                                                                  | Marks | AOs    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 10 (a)   | $\frac{\mathrm{d}r}{\mathrm{d}t} \propto \pm \frac{1}{r^2}  \text{or}  \frac{\mathrm{d}r}{\mathrm{d}t}$                                                                                                                                              | $= \pm \frac{k}{r^2} \qquad \text{(for } k \text{ or a numerical } k\text{)}$ $\text{d}t \implies \dots \qquad \text{(for } k \text{ or a numerical } k\text{)}$                                                 | M1    | 3.3    |
|          | $\int r^2  \mathrm{d}r = \int \pm k  \mathrm{d}r$                                                                                                                                                                                                    | $dt \Rightarrow$ (for $k$ or a numerical $k$ )                                                                                                                                                                   | M1    | 2.1    |
|          | $\frac{1}{3}r^3 = \pm kt \ \{-\frac{1}{3}r^3 = \pm kt \ \}$                                                                                                                                                                                          | + c}                                                                                                                                                                                                             | A1    | 1.1b   |
|          | t = 0, r = 5  and  t = 4, r = 3                                                                                                                                                                                                                      | t = 0, r = 5  and  t = 240, r = 3<br>gives $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$ ,                                                                                                                 | M1    | 3.1a   |
|          | where r, in mm, is the radius {of the mint} and t, in minutes, is the time from when it {the mint} was placed in the mouth                                                                                                                           | where r, in mm, is the radius {of the mint} and t, in seconds, is the time from when it {the mint} was placed in the mouth                                                                                       | A1    | 1.1b   |
|          |                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                | (5)   |        |
| (b)      | $r = 0 \Rightarrow 0 = -\frac{49}{6}t + \frac{125}{3} =$                                                                                                                                                                                             | $\Rightarrow 0 = -49t + 250 \implies t = \dots$                                                                                                                                                                  | M1    | 3.4    |
|          | time = 5 minu                                                                                                                                                                                                                                        | ites 6 seconds                                                                                                                                                                                                   | A1    | 1.1b   |
|          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  | (2)   |        |
| (c)      | <ul> <li>Not valid for times greater</li> <li>Mint may not retain the sha<br/>radius) as it is being sucked</li> <li>The model indicates that th<br/>it dissolves</li> <li>Model does not consider th</li> <li>Model does not consider ra</li> </ul> | ow the mint is sucked hether the mint is bitten up to 5 minutes 6 seconds, o.e. than 5 minutes 6 seconds, o.e. upe of a sphere (or have uniform le radius of the mint is negative after temperature in the mouth | B1    | 3.5b   |
|          | - Willit could be swallowed b                                                                                                                                                                                                                        | crore it dissorves in the mouth                                                                                                                                                                                  | (1)   |        |
|          | <u> </u>                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  | ` ′   | marks) |

|              | Notes for Question 10                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)          |                                                                                                                                                                                                                                                                                                                                                   |
| M1:          | Translates the description of the model into mathematics. See scheme.                                                                                                                                                                                                                                                                             |
| M1:          | Separates the variables of their differential equation which is in the form $\frac{dr}{dt} = f(r)$ and some                                                                                                                                                                                                                                       |
|              | attempt at integration. (e.g. attempts to integrate at least one side).                                                                                                                                                                                                                                                                           |
|              | e.g. $\int r^2 dr = \int \pm k dt$ and some attempt at integration.                                                                                                                                                                                                                                                                               |
|              | Condone the lack of integral signs                                                                                                                                                                                                                                                                                                                |
| Note:        | You can imply the M1 mark for $r^2 dr = -k dt \Rightarrow \frac{1}{3}r^3 = -kt$                                                                                                                                                                                                                                                                   |
| Note:        | A numerical value of $k$ (e.g. $k = \pm 1$ ) is allowed for the first two M marks                                                                                                                                                                                                                                                                 |
| A1:          | Correct integration to give $\frac{1}{3}r^3 = \pm kt$ with or without a constant of integration, c                                                                                                                                                                                                                                                |
| M1:          | For a complete process of using the boundary conditions to find both their unknown constants and finds an equation linking $r$ and $t$<br>So applies either  • $t = 0$ , $r = 5$ and $t = 4$ , $r = 3$ , or  • $t = 0$ , $r = 5$ and $t = 240$ , $t = 3$ ,                                                                                        |
|              | on their integrated equation to find their constants $k$ and $c$ and obtains an equation linking $r$ and $t$                                                                                                                                                                                                                                      |
| A1:          | Correct equation, with variables $r$ and $t$ fully defined including correct reference to units.                                                                                                                                                                                                                                                  |
|              | • $\frac{1}{3}r^3 = -\frac{49}{6}t + \frac{125}{3}$ , {or an equivalent equation,} where $r$ , in mm, is the radius {of the mint} and $t$ , in minutes, is the time from when it {the mint} was placed in the mouth • $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$ , {or an equivalent equation,} where $r$ , in mm, is the radius {of the |
|              | mint and $t$ , in seconds, is the time from when it {the mint} was placed in the mouth                                                                                                                                                                                                                                                            |
| Note:        | Allow correct equations such as  • in minutes, $r = \sqrt[3]{\frac{250 - 49t}{2}}$ , $r^3 = -\frac{49}{2}t + 125$ or $t = \frac{250 - 2r^3}{49}$ • in seconds, $r = \sqrt[3]{\frac{15000 - 49t}{120}}$ , $r^3 = -\frac{49}{120}t + 125$ or $t = \frac{15000 - 120r^3}{49}$                                                                        |
| Note:        | t defined as "the time from the start" is not sufficient for the final A1                                                                                                                                                                                                                                                                         |
| <b>(b)</b>   |                                                                                                                                                                                                                                                                                                                                                   |
| M1:          | Sets $r = 0$ in their part (a) equation which links $r$ with $t$ and rearranges to make $t =$                                                                                                                                                                                                                                                     |
| A1:          | 5 minutes 6 seconds cao ( <b>Note:</b> 306 seconds with no reference to 5 minutes 6 seconds is A0)                                                                                                                                                                                                                                                |
| Note:        | Give M0 if their equation would solve to give a negative time or a negative time is found                                                                                                                                                                                                                                                         |
| Note:        | You can mark part (a) and part (b) together                                                                                                                                                                                                                                                                                                       |
| (c)          | Cookshama                                                                                                                                                                                                                                                                                                                                         |
| B1:<br>Note: | See scheme  Do not accept by itself                                                                                                                                                                                                                                                                                                               |
| 11016:       | mint may not dissolve at a constant rate                                                                                                                                                                                                                                                                                                          |
|              | rate of decrease of mint must be constant                                                                                                                                                                                                                                                                                                         |
|              | • $0 \le t < \frac{250}{49}$ , $r \ge 0$ ; without any written explanation                                                                                                                                                                                                                                                                        |
|              | • reference to a mint having $r > 5$                                                                                                                                                                                                                                                                                                              |
| L            | 10.2010H00 to a minut maxing , > 0                                                                                                                                                                                                                                                                                                                |

| Questi                                                                             | on       | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks      | AOs          |  |  |
|------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--|--|
| 11                                                                                 |          | $\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv A + \frac{B}{(x-3)} + \frac{C}{(1-2x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |  |  |
| (a) $1+11x-6x^2 \equiv A(1-2x)(x-3) + B(1-2x) + C(x-3) \Rightarrow B =, C = A = 3$ |          | $1+11x-6x^2 \equiv A(1-2x)(x-3) + B(1-2x) + C(x-3) \Rightarrow B =, C =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1         | 2.1          |  |  |
|                                                                                    |          | A = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1         | 1.1b         |  |  |
|                                                                                    | -        | Uses substitution or compares terms to find either $B =$ or $C =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1         | 1.1b         |  |  |
|                                                                                    |          | B=4 and $C=-2$ which have been found using a correct identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1         | 1.1b         |  |  |
|                                                                                    | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)        |              |  |  |
| (a)<br>Way 2                                                                       | 2        | {long division gives} $\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv 3 + \frac{-10x+10}{(x-3)(1-2x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |  |  |
|                                                                                    | •        | $-10x + 10 \equiv B(1-2x) + C(x-3) \Rightarrow B =, C =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1         | 2.1          |  |  |
|                                                                                    |          | A = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1         | 1.1b         |  |  |
|                                                                                    |          | Uses substitution or compares terms to find either $B =$ or $C =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1         | 1.1b         |  |  |
|                                                                                    |          | $B = 4$ and $C = -2$ which have been found using $-10x + 10 \equiv B(1-2x) + C(x-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1         | 1.1b         |  |  |
|                                                                                    | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)        |              |  |  |
| (b)                                                                                |          | $f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}  \{ = 3 + 4(x-3)^{-1} - 2(1-2x)^{-1} \}; \ x > 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |              |  |  |
|                                                                                    |          | $f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2} \left\{ = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1<br>A1ft | 2.1          |  |  |
|                                                                                    |          | Correct f'(x) and as $(x-3)^2 > 0$ and $(1-2x)^2 > 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1.1b         |  |  |
|                                                                                    |          | then $f'(x) = -(+ ve) - (+ ve) < 0$ , so $f(x)$ is a decreasing function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1         | 2.4          |  |  |
|                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)        | marks)       |  |  |
|                                                                                    |          | Notes for Question 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (-         |              |  |  |
| (a)                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |  |  |
| M1:                                                                                | Wa       | <b>y 1:</b> Uses a correct identity $1+11x-6x^2 = A(1-2x)(x-3) + B(1-2x) + C(1-2x) + C(1-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (x-3) in a |              |  |  |
|                                                                                    | com      | uplete method to find values for $B$ and $C$ . Note: Allow one slip in copying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g 1+11x-6  | $\delta x^2$ |  |  |
|                                                                                    | Wa       | <b>Way 2:</b> Uses a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$ (which has been found from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |              |  |  |
|                                                                                    | long     | g division) in a complete method to find values for B and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |  |  |
| B1:                                                                                | A =      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |  |  |
| M1:                                                                                | This     | Attempts to find the value of either <i>B</i> or <i>C</i> from their identity  This can be achieved by <i>either</i> substituting values into their identity <i>or</i> by comparing coefficients and solving the resulting equations simultaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              |  |  |
| A1:                                                                                | _        | e scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |  |  |
| Note:                                                                              | l _ '    | <b>Way 1:</b> Comparing terms:<br>$x^2: -6 = -2A;  x:  11 = 7A - 2B + C;  \text{constant}:  1 = -3A + B - 3C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |  |  |
|                                                                                    | Wa       | <b>y 1:</b> Substituting: $x=3: -20=-5B \Rightarrow B=4$ ; $x=\frac{1}{2}: 5=-\frac{5}{2}C \Rightarrow C=-\frac{5}{2}C \Rightarrow C=$ | -2         |              |  |  |
| Note:                                                                              | <b>!</b> | <b>y 2:</b> Comparing terms: $x$ : $-10 = -2B + C$ ; constant: $10 = B - 3C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              |  |  |
|                                                                                    | Wa       | <b>y 2:</b> Substituting: $x = 3: -20 = -5B \Rightarrow B = 4; x = \frac{1}{2}: 5 = -\frac{5}{2}C \Rightarrow C \Rightarrow C = -\frac{5}{2}C \Rightarrow C \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2         |              |  |  |

| Note: | A=3, B=4, C=-2 from no working scores M1B1M1A1               |
|-------|--------------------------------------------------------------|
| Note: | The final A1 mark is effectively dependent upon both M marks |

|            | Notes for Question 11 Continued                                                                                                                                   |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a) ctd    |                                                                                                                                                                   |  |  |
| Note:      | Writing $1+11x-6x^2 \equiv B(1-2x)+C(x-3) \Rightarrow B=4, C=-2 \text{ will get } 1^{\text{st}} \text{ M0, } 2^{\text{nd}} \text{ M1, } 1^{\text{st}} \text{ A0}$ |  |  |
| Note:      | <b>Way 1:</b> You can imply a correct identity $1 + 11x - 6x^2 = A(1 - 2x)(x - 3) + B(1 - 2x) + C(x - 3)$                                                         |  |  |
|            | from seeing $\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv \frac{A(1-2x)(x-3)+B(1-2x)+C(x-3)}{(x-3)(1-2x)}$                                                               |  |  |
|            | (x-3)(1-2x) = (x-3)(1-2x)                                                                                                                                         |  |  |
| Note:      | <b>Way 2:</b> You can imply a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$                                                                                    |  |  |
|            | from seeing $\frac{-10x+10}{(x-3)(1-2x)} \equiv \frac{B(1-2x)+C(x-3)}{(x-3)(1-2x)}$                                                                               |  |  |
| <b>(b)</b> |                                                                                                                                                                   |  |  |
| M1:        | Differentiates to give $\{f'(x) = \}$ $\pm \lambda (x-3)^{-2} \pm \mu (1-2x)^{-2}$ ; $\lambda$ , $\mu \neq 0$                                                     |  |  |
| A1ft:      | $f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$ , which can be simplified or un-simplified                                                                                  |  |  |
| Note:      | Allow A1ft for $f'(x) = -(\text{their } B)(x-3)^{-2} + (2)(\text{their } C)(1-2x)^{-2}$ ; (their $B$ ), (their $C$ ) $\neq 0$                                     |  |  |
| A1:        | $f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$ or $f'(x) = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2}$ and a correct explanation                                              |  |  |
|            | e.g. $f'(x) = -(+ ve) - (+ ve) < 0$ , so $f(x)$ is a decreasing {function}                                                                                        |  |  |
| Note:      | The final A mark can be scored in part (b) from an incorrect $A =$ or from $A = 0$ or no value of                                                                 |  |  |
|            | A found in part (a)                                                                                                                                               |  |  |

|            | Notes for Question 11 Continued - Alternatives                                                                                                                                         |           |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| (a)        |                                                                                                                                                                                        |           |  |
| Note:      | Be aware of the following alternative solutions, by initially dividing by " $(x-3)$ " or " $(1-2x)$ "                                                                                  |           |  |
|            | _                                                                                                                                                                                      |           |  |
|            | $\bullet  \frac{1+11x-6x^2}{\text{"}(x-3)\text{"}(1-2x)} \equiv \frac{-6x-7}{(1-2x)} - \frac{20}{(x-3)(1-2x)} \equiv 3 - \frac{10}{(1-2x)} - \frac{20}{(x-3)(1-2x)}$                   |           |  |
|            | $\frac{20}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 20 \equiv D(1-2x) + E(x-3) \implies D = -4, E = -4$                                                         | -8        |  |
|            | $\Rightarrow 3 - \frac{10}{(1 - 2x)} - \left(\frac{-4}{(x - 3)} + \frac{-8}{(1 - 2x)}\right) \equiv 3 + \frac{4}{(x - 3)} - \frac{2}{(1 - 2x)}; A = 3, B = 4, C = -2$                  | 2         |  |
|            | $\bullet \frac{1+11x-6x^2}{(x-3)"(1-2x)"} \equiv \frac{3x-4}{(x-3)} + \frac{5}{(x-3)(1-2x)} \equiv 3 + \frac{5}{(x-3)} + \frac{5}{(x-3)(1-2x)}$                                        |           |  |
|            | $\frac{5}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 5 \equiv D(1-2x) + E(x-3) \implies D = -1, E = -2$                                                           |           |  |
|            | $\Rightarrow 3 + \frac{5}{(x-3)} + \left(\frac{-1}{(x-3)} + \frac{-2}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A = 3, B = 4, C = -2$                              |           |  |
| <b>(b)</b> |                                                                                                                                                                                        |           |  |
|            | Alternative Method 1:                                                                                                                                                                  |           |  |
|            | $f(x) = \frac{1+11x-6x^2}{(x-3)(1-2x)}, \ x > 3 \implies f(x) = \frac{1+11x-6x^2}{-2x^2+7x-3}; \ \begin{cases} u = 1+11x-6x^2 & v = -2x^2+7x \\ u' = 11-12x & v' = -4x+7x \end{cases}$ | 7x-3      |  |
|            | $f'(x) = \frac{(-2x^2 + 7x - 3)(11 - 12x) - (1 + 11x - 6x^2)(-4x + 7)}{(-2x^2 + 7x - 3)^2}$ Uses quotient rule to find f'(x)                                                           | M1        |  |
|            | $\frac{(-2x^2 + 7x - 3)}{\text{Correct differentiation}}$                                                                                                                              | <b>A1</b> |  |
|            | $f'(x) = \frac{-20((x-1)^2 + 1)}{(-2x^2 + 7x - 3)^2}$ and a correct explanation,                                                                                                       | <b>A1</b> |  |
|            | e.g. $f'(x) = -\frac{(+ ve)}{(+ ve)} < 0$ , so $f(x)$ is a decreasing {function}                                                                                                       |           |  |
|            | Alternative Method 2:                                                                                                                                                                  |           |  |
|            | Allow M1A1A1 for the following solution:                                                                                                                                               |           |  |
|            | Given $f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} = 3 + \frac{4}{(x-3)} + \frac{2}{(2x-1)}$                                                                                         |           |  |
|            | as $\frac{4}{(x-3)}$ decreases when $x > 3$ and $\frac{2}{(2x-1)}$ decreases when $x > 3$                                                                                              |           |  |
|            | then $f(x)$ is a decreasing {function}                                                                                                                                                 |           |  |

| Questic      | on Scheme                                                                                                                                                 | Marks                            | AOs          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|
| 12           | $1 - \cos 2\theta \equiv \tan \theta \sin 2\theta, \ \theta \neq \frac{(2n+1)\pi}{2}, \ n \in \mathbb{Z}$                                                 |                                  |              |
| (a)<br>Way 1 | $\tan\theta\sin 2\theta = \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta)$                                                              | M1                               | 1.1b         |
|              | $= \left(\frac{\sin \theta}{\cos \theta}\right) (2\sin \theta \cos \theta) = 2\sin^2 \theta = 1 - \cos 2\theta *$                                         | M1                               | 1.1b         |
|              | $-\left(\cos\theta\right)^{(2\sin\theta)\cos\theta} = 2\sin\theta - 1\cos2\theta$                                                                         | A1*                              | 2.1          |
| (a)          |                                                                                                                                                           | (3)                              |              |
| (a)<br>Way 2 | $1 - \cos 2\theta = 1 - (1 - 2\sin^2 \theta) = 2\sin^2 \theta$                                                                                            | M1                               | 1.1b         |
|              | $= \left(\frac{\sin\theta}{\cos\theta}\right) (2\sin\theta\cos\theta) = \tan\theta\sin2\theta *$                                                          | M1                               | 1.1b         |
|              | $(\cos\theta)$                                                                                                                                            | (3)                              | 2.1          |
|              | $(\sec^2 x - 5)(1 - \cos 2x) = 3\tan^2 x \sin 2x,  -\frac{\pi}{2} < x < \frac{\pi}{2}$                                                                    |                                  |              |
| (b)          | $(\sec^2 x - 5)\tan x \sin 2x = 3\tan^2 x \sin 2x$                                                                                                        |                                  |              |
| Way 1        | or $(\sec^2 x - 5)(1 - \cos 2x) = 3\tan x(1 - \cos 2x)$                                                                                                   |                                  |              |
|              | Deduces $x = 0$                                                                                                                                           | B1                               | 2.2a         |
|              | Uses $\sec^2 x = 1 + \tan^2 x$ and cancels/factorises out $\tan x$ or $(1 - \cos 2x)$                                                                     |                                  |              |
|              | e.g. $(1 + \tan^2 x - 3\tan x - 5)\tan x = 0$                                                                                                             | M1                               | 2.1          |
|              | or $(1 + \tan^2 x - 3\tan x - 5)(1 - \cos 2x) = 0$                                                                                                        | 1411                             | 2.1          |
|              | or $1 + \tan^2 x - 5 = 3\tan x$                                                                                                                           |                                  |              |
|              | $\tan^2 x - 3\tan x - 4 = 0$                                                                                                                              | A1                               | 1.1b         |
|              | $(\tan x - 4)(\tan x + 1) = 0 \Rightarrow \tan x = \dots$                                                                                                 | M1                               | 1.1b         |
|              | $x = -\frac{\pi}{4}, 1.326$                                                                                                                               | A1<br>A1                         | 1.1b<br>1.1b |
|              | ·                                                                                                                                                         | (6)                              |              |
|              | Notes for Ougstion 12                                                                                                                                     | (9                               | marks)       |
| (a)          | Way 1                                                                                                                                                     |                                  |              |
| M1:          | Applies $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin 2\theta = 2\sin \theta \cos \theta$ to $\tan \theta \sin 2\theta$                       |                                  |              |
| M1:          | Cancels as scheme (may be implied) and attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$                                                                |                                  |              |
| A1*:         | For a correct proof showing all steps of the argument                                                                                                     |                                  |              |
| (a)<br>Way 2 |                                                                                                                                                           |                                  |              |
|              | For using $\cos 2\theta = 1 - 2\sin^2 \theta$                                                                                                             |                                  |              |
| Note:        | If the form $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or $\cos 2\theta = 2\cos^2 \theta - 1$ is used, the mark of                                    | cannot be aw                     | arded        |
|              | until $\cos^2\theta$ has been replaced by $1-\sin^2\theta$                                                                                                |                                  |              |
| M1:          |                                                                                                                                                           | $\frac{n\theta}{\cos\theta}$ and |              |
| A # 45       | $\sin 2\theta = 2\sin \theta \cos \theta$ within the given expression                                                                                     |                                  |              |
| A1*:         | For a correct proof showing all steps of the argument<br>If a proof meets in the middle; e.g. they show LHS = $2\sin^2 \theta$ and RHS = $2\sin^2 \theta$ | $\sin^2 \theta$ , then           | nome         |
|              | indication must be given that the proof is complete. E.g. $1-\cos 2\theta = \tan \theta \sin \theta$                                                      |                                  |              |
|              | indication must be given that the proof is complete. E.g. $1-\cos 2\theta = \tan \theta \sin \theta$                                                      | 120, QED, C                      | JUX          |

|            | Notes for Question 12 Continued                                                                                                                                                                |                                                                                                                                            |               |      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| (b)        |                                                                                                                                                                                                |                                                                                                                                            |               |      |
| B1:        | Deduces that the given equation yields a solution $x = 0$                                                                                                                                      |                                                                                                                                            |               |      |
| M1:        | For using the key step of $\sec^2 x = 1 + \tan^2 x$                                                                                                                                            | and cancels/factorises out $\tan x$ or                                                                                                     | $(1-\cos 2x)$ | ·)   |
|            | or $\sin 2x$ to produce a quadratic factor or quadratic equation in just $\tan x$                                                                                                              |                                                                                                                                            |               |      |
| Note:      | Allow the use of $\pm \sec^2 x = \pm 1 \pm \tan^2 x$ for                                                                                                                                       | M1                                                                                                                                         |               |      |
| <b>A1:</b> | Correct 3TQ in $\tan x$ . E.g. $\tan^2 x - 3\tan x$                                                                                                                                            | -4 = 0                                                                                                                                     |               |      |
| Note:      | E.g. $\tan^2 x - 4 = 3\tan x$ or $\tan^2 x - 3\tan x$                                                                                                                                          | = 4 are acceptable for A1                                                                                                                  |               |      |
| M1:        | For a correct method of solving their 3TQ                                                                                                                                                      | in tan x                                                                                                                                   |               |      |
| A1:        | Any one of $-\frac{\pi}{4}$ , awrt $-0.785$ , awrt 1.326                                                                                                                                       | , –45°, awrt 75.964°                                                                                                                       |               |      |
| A1:        | Only $x = -\frac{\pi}{4}$ , 1.326 <b>cao</b> stated in the range $-\frac{\pi}{2} < x < \frac{\pi}{2}$                                                                                          |                                                                                                                                            |               |      |
| Note:      | Alternative Method (Alt 1)                                                                                                                                                                     |                                                                                                                                            |               |      |
|            | $(\sec^2 x - 5)\tan x \sin 2x =$                                                                                                                                                               | $=3\tan^2 x \sin 2x$                                                                                                                       |               |      |
|            | or $(\sec^2 x - 5)(1 - \cos 2x) =$                                                                                                                                                             | $= 3\tan x(1-\cos 2x)$                                                                                                                     |               |      |
|            | Deduces x                                                                                                                                                                                      | =0                                                                                                                                         | B1            | 2.2a |
|            | $\sec^2 x - 5 = 3\tan x \implies \frac{1}{\cos^2 x} - 5 = 3\left(\frac{\sin x}{\cos x}\right)$ $1 - 5\cos^2 x = 3\sin x \cos x$ $1 - 5\left(\frac{1 + \cos 2x}{2}\right) = \frac{3}{2}\sin 2x$ | Complete process (as shown) of using the identities for $\sin 2x$ and $\cos 2x$ to proceed as far as $\pm A \pm B \cos 2x = \pm C \sin 2x$ | M1            | 2.1  |
|            | $-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ $\{3\sin 2x + 5\cos 2x = -3\}$                                                                                                        | $-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ o.e.                                                                              | A1            | 1.1b |
|            | $\sqrt{34}\sin(2x+1.03) = -3$                                                                                                                                                                  | Expresses their answer in the form $R\sin(2x + \alpha) = k$ ; $k \neq 0$ with values for $R$ and $\alpha$                                  | M1            | 1.1b |
|            | $\sin(2x+1.03) =$                                                                                                                                                                              | $=-\frac{3}{\sqrt{34}}$                                                                                                                    |               |      |
|            | $r = \frac{\pi}{1}$                                                                                                                                                                            |                                                                                                                                            | A1            | 1.1b |
|            | $x = -\frac{\pi}{4}, 1.326$                                                                                                                                                                    |                                                                                                                                            | <b>A</b> 1    | 1.1b |

| Questi | on Scheme                                                                                                                                                             | Marks             | AOs      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| 13     | $C: y = x \ln x$ ; $l$ is a normal to $C$ at $P(e, e)$                                                                                                                |                   |          |
| 13     | Let $x_A$ be the x-coordinate of where $l$ cuts the x-axis                                                                                                            |                   |          |
|        | $\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{x}\right)  \{=1 + \ln x\}$                                                                                | M1                | 2.1      |
|        | $\frac{dx}{dx}$                                                                                                                                                       | A1                | 1.1b     |
|        | $x = e, m_T = 2 \Rightarrow m_N = -\frac{1}{2} \Rightarrow y - e = -\frac{1}{2}(x - e)$                                                                               | M1                | 3.1a     |
|        | $y = 0 \Rightarrow -e = -\frac{1}{2}(x - e) \Rightarrow x = \dots$                                                                                                    |                   |          |
|        | <i>l</i> meets x-axis at $x = 3e$ (allow $x = 2e + elne$ )                                                                                                            | A1                | 1.1b     |
|        | {Areas:} either $\int_1^e x \ln x dx = [\dots]_1^e = \dots$ or $\frac{1}{2}$ ((their $x_A$ ) - e)e                                                                    | M1                | 2.1      |
|        | $\left\{ \int x \ln x  \mathrm{d}x = \right\} \frac{1}{2} x^2 \ln x - \int \frac{1}{x} \cdot \left(\frac{x^2}{2}\right) \{ \mathrm{d}x \}$                            | M1                | 2.1      |
|        | $\left\{ = \frac{1}{2}x^2 \ln x - \left\{ \frac{1}{2}x \left\{ dx \right\} \right\} = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$                                          | dM1               | 1.1b     |
|        | $\left\{-\frac{1}{2}x^{2} + \frac{1}{2}x^{2} + \frac{1}{2}x^{2} + \frac{1}{2}x^{2} + \frac{1}{4}x^{2}\right\}$                                                        | A1                | 1.1b     |
|        | Area $(R_1) = \int_1^e x \ln x  dx = \left[ \dots \right]_1^e = \dots $ ; Area $(R_2) = \frac{1}{2}$ ((their $x_A$ ) - e)e                                            | M1                | 3.1a     |
|        | and so, Area(R) = Area(R <sub>1</sub> ) + Area(R <sub>2</sub> ) $\{=\frac{1}{4}e^2 + \frac{1}{4} + e^2\}$                                                             |                   |          |
|        | Area(R) = $\frac{5}{4}e^2 + \frac{1}{4}$                                                                                                                              | A1                | 1.1b     |
|        |                                                                                                                                                                       | (10)              |          |
| M1:    | Notes for Question 13  Differentiate benefit at a series in $\ln x + x(thoir \alpha'(x))$ where $\alpha$                                                              | $r(r) - \ln r$    |          |
| A1:    | Differentiates by using the product rule to give $\ln x + x$ (their $g'(x)$ ), where §                                                                                |                   |          |
| M1:    | Correct differentiation of $y = x \ln x$ , which can be un-simplified or simplified                                                                                   |                   |          |
| 1411.  | Complete strategy to find the <i>x</i> coordinate where their normal to <i>C</i> at $P(e, e)$ meets the <i>x</i> -axis i.e. Sets $y=0$ in $y-e=m_N(x-e)$ to find $x=$ |                   |          |
| Note:  | $m_T$ is found by using calculus and $m_N \neq m_T$                                                                                                                   |                   |          |
| A1:    | I meets x-axis at $x = 3e$ , allowing un-simplified values for x such as $x = 2e + e$                                                                                 | elne              |          |
| Note:  | Allow $x = \text{awrt } 8.15$                                                                                                                                         |                   |          |
| M1:    | Scored for either                                                                                                                                                     |                   |          |
|        | • Area under curve $= \int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$ , with limits of e and 1                                                                     | and some at       | tempt to |
|        | substitute these and subtract                                                                                                                                         |                   |          |
|        | • or Area under line = $\frac{1}{2}$ ((their $x_A$ ) – e)e, with a valid attempt to find                                                                              | $X_A$             |          |
| M1:    | Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}$ ;                                                          | $A \neq 0, B > 0$ | 1        |
| dM1:   | dependent on the previous M mark                                                                                                                                      |                   |          |
|        | Integrates the second term to give $\pm \lambda x^2$ ; $\lambda \neq 0$                                                                                               |                   |          |
| A1:    | $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$                                                                                                                               |                   |          |
| M1:    | Complete strategy of finding the area of <i>R</i> by finding the sum of two key areas. See scheme.                                                                    |                   |          |
| A1:    | $\frac{5}{4}e^2 + \frac{1}{4}$                                                                                                                                        |                   |          |

|       | Notes for Question 13 Continued                                                                                                                        |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Note: | Area( $R_2$ ) can also be found by integrating the line <i>l</i> between limits of e and their $x_A$                                                   |  |  |
|       | i.e. Area $(R_2) = \int_{e}^{\text{their } x_A} \left( -\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[ \dots \right]_{e}^{\text{their } x_A} = \dots$ |  |  |
| Note: | Calculator approach with no algebra, differentiation or integration seen:                                                                              |  |  |
|       | • Finding <i>l</i> cuts through the <i>x</i> -axis at awrt 8.15 is 2 <sup>nd</sup> M1 2 <sup>nd</sup> A1                                               |  |  |
|       | • Finding area between curve and the x-axis between $x=1$ and $x=e$                                                                                    |  |  |
|       | to give awrt 2.10 is 3 <sup>rd</sup> M1                                                                                                                |  |  |
|       | <ul> <li>Using the above information (must be seen) to apply</li> </ul>                                                                                |  |  |
|       | Area( $R$ ) = 2.0972+ 7.3890 = 9.4862 is final M1                                                                                                      |  |  |
|       | Therefore, a maximum of 4 marks out of the 10 available.                                                                                               |  |  |

| Question     | Scheme                                                                                                                                                                                                                                                   | Marks  | AOs     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| 14           | $N = \frac{900}{3 + 7e^{-0.25t}} = 900(3 + 7e^{-0.25t})^{-1}, t \in \mathbb{R}, t \ge 0;  \frac{dN}{dt} = \frac{N(300 - N)}{1200}$                                                                                                                       |        |         |
| (a)          | 90                                                                                                                                                                                                                                                       | B1     | 3.4     |
|              |                                                                                                                                                                                                                                                          | (1)    |         |
| <b>(b)</b>   | $\frac{\mathrm{d}N}{\mathrm{d}t} = -900(3 + 7\mathrm{e}^{-0.25t})^{-2} \left(7(-0.25)\mathrm{e}^{-0.25t}\right) \left\{ = \frac{900(0.25)(7)\mathrm{e}^{-0.25t}}{(3 + 7\mathrm{e}^{-0.25t})^2} \right\}$                                                 | M1     | 2.1     |
| Way 1        | $dt = \frac{1}{2} (3 + 7e^{-0.25t})^2$                                                                                                                                                                                                                   | A1     | 1.1b    |
|              | $\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{900(0.25)\left(\left(\frac{900}{N} - 3\right)\right)}{\left(\frac{900}{N}\right)^2}$                                                                                                                | dM1    | 2.1     |
|              | correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$ *                                                                                                                                                                                   | A1*    | 1.1b    |
|              |                                                                                                                                                                                                                                                          | (4)    |         |
| <b>(b)</b>   | $\frac{dN}{dt} = -900(3 + 7e^{-0.25t})^{-2} \left( 7(-0.25)e^{-0.25t} \right) \left\{ = \frac{900(0.25)(7)e^{-0.25t}}{(3 + 7e^{-0.25t})^2} \right\}$                                                                                                     | M1     | 2.1     |
| Way 2        | $dt = \frac{1}{3} \frac{1}{(3 + 7e^{-0.25t})^2} $                                                                                                                                                                                                        | A1     | 1.1b    |
|              | $\frac{N(300-N)}{1200} = \frac{\left(\frac{900}{3+7e^{-0.25t}}\right)\left(300-\frac{900}{3+7e^{-0.25t}}\right)}{1200}$ $LHS = \frac{1575e^{-0.25t}}{\left(3+7e^{-0.25t}\right)^2} \text{ o.e.,}$                                                        | dM1    | 2.1     |
|              | LHS = $\frac{1575e^{-0.25t}}{(3+7e^{-0.25t})^2}$ o.e.,<br>RHS = $\frac{900(300(3+7e^{-0.25t})-900)}{1200(3+7e^{-0.25t})^2} = \frac{1575e^{-0.25t}}{(3+7e^{-0.25t})^2}$ o.e.<br>and states hence $\frac{dN}{dt} = \frac{N(300-N)}{1200}$ (or LHS = RHS) * | A1*    | 1.1b    |
|              |                                                                                                                                                                                                                                                          | (4)    |         |
| (c)          | Deduces $N = 150$ (can be implied)                                                                                                                                                                                                                       | B1     | 2.2a    |
|              | so $150 = \frac{900}{3 + 7e^{-0.25T}} \implies e^{-0.25T} = \frac{3}{7}$                                                                                                                                                                                 | M1     | 3.4     |
|              | $T = -4 \ln \left(\frac{3}{7}\right)$ or $T = \text{awrt } 3.4 \text{ (months)}$                                                                                                                                                                         | dM1    | 1.1b    |
|              | 7)                                                                                                                                                                                                                                                       | A1     | 1.1b    |
| (1)          |                                                                                                                                                                                                                                                          | (4)    | 2.4     |
| ( <b>d</b> ) | either one of 299 or 300                                                                                                                                                                                                                                 | B1 (1) | 3.4     |
|              |                                                                                                                                                                                                                                                          | (1)    | marks)  |
|              |                                                                                                                                                                                                                                                          | (10    | man No) |

|            | Notes for Question 14                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 (b)     |                                                                                                                                                                                 |
| M1:        | Attempts to differentiate using                                                                                                                                                 |
|            | • the chain rule to give $\frac{dN}{dt} = \pm Ae^{-0.25t}(3 + 7e^{-0.25t})^{-2}$ or $\frac{\pm Ae^{-0.25t}}{(3 + 7e^{-0.25t})^2}$ o.e.                                          |
|            | • the quotient rule to give $\frac{dN}{dt} = \frac{(3 + 7e^{-0.25t})(0) \pm Ae^{-0.25t}}{(3 + 7e^{-0.25t})^2}$                                                                  |
|            | • implicit differentiation to give $N(3+7e^{-0.25t}) = 900 \Rightarrow (3+7e^{-0.25t}) \frac{dN}{dt} \pm ANe^{-0.25t} = 0$ , o.e.                                               |
|            | where $A \neq 0$                                                                                                                                                                |
| Note:      | Condone a slip in copying $(3+7e^{-0.25t})$ for the M mark                                                                                                                      |
| <b>A1:</b> | A correct differentiation statement                                                                                                                                             |
| Note:      | Implicit differentiation gives $(3+7e^{-0.25t})\frac{dN}{dt} -1.75Ne^{-0.25t} = 0$                                                                                              |
| dM1:       | <b>Way 1:</b> Complete attempt, by eliminating t, to form an equation linking $\frac{dN}{dt}$ and N only                                                                        |
|            | Way 2: Complete substitution of $N = \frac{900}{3 + 7e^{-0.25t}}$ into $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$                                                                |
| Note:      | <b>Way 1:</b> e.g. substitutes $3 + 7e^{-0.25t} = \frac{900}{N}$ and $e^{-0.25t} = \frac{900}{N}$ or substitutes $e^{-0.25t} = \frac{900}{N} - 3$ into                          |
|            | their $\frac{dN}{dt} =$ to form an equation linking $\frac{dN}{dt}$ and $N$                                                                                                     |
| A1*:       | <b>Way 1:</b> Correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$ *                                                                                            |
|            | Way 2: See scheme                                                                                                                                                               |
| (c)        |                                                                                                                                                                                 |
| B1:        | Deduces or shows that $\frac{dN}{dt}$ is maximised when $N = 150$                                                                                                               |
| M1:        | Uses the model $N = \frac{900}{3 + 7e^{-0.25t}}$ with their $N = 150$ and proceeds as far as $e^{-0.25T} = k$ , $k > 0$                                                         |
|            | or $e^{0.25T} = k$ , $k > 0$ . Condone $t \equiv T$                                                                                                                             |
| dM1:       | Correct method of using logarithms to find a value for $T$ . Condone $t \equiv T$                                                                                               |
| A1:        | see scheme                                                                                                                                                                      |
| Note:      | $\frac{\mathrm{d}^2 N}{\mathrm{d}t^2} = \frac{\mathrm{d}N}{\mathrm{d}t} \left( \frac{300}{1200} - \frac{2N}{1200} \right) = 0 \Rightarrow N = 150 \text{ is acceptable for B1}$ |
| Note:      | Ignore units for T                                                                                                                                                              |
| Note:      | Applying $300 = \frac{900}{3 + 7e^{-0.25t}} \Rightarrow t =$ or $0 = \frac{900}{3 + 7e^{-0.25t}} \Rightarrow t =$ is M0 dM0 A0                                                  |
| Note:      | M1 dM1 can only be gained in (c) by using an N value in the range $90 < N < 300$                                                                                                |
| (d)        |                                                                                                                                                                                 |
| B1:        | 300 (or accept 299)                                                                                                                                                             |
|            |                                                                                                                                                                                 |

| Question     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks     | AOs  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| 14           | $N = \frac{900}{3 + 7e^{-0.25t}} = 900(3 + 7e^{-0.25t})^{-1}, t \in \mathbb{R}, t \ge 0;  \frac{dN}{dt} = \frac{N(300 - N)}{1200}$                                                                                                                                                                                                                                                                                                                                                  |           |      |
| (b)<br>Way 3 | $\int \frac{1}{N(300 - N)} dN = \int \frac{1}{1200} dt$                                                                                                                                                                                                                                                                                                                                                                                                                             | M1        | 2.1  |
|              | $\int \frac{1}{300} \left( \frac{1}{N} + \frac{1}{300 - N} \right) dN = \int \frac{1}{1200} dt$ $\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200} t \ \{+c\}$                                                                                                                                                                                                                                                                                                      | A1        | 1.1b |
|              | $\{t = 0, N = 90 \Rightarrow\}  c = \frac{1}{300} \ln(90) - \frac{1}{300} \ln(210) \Rightarrow c = \frac{1}{300} \ln\left(\frac{3}{7}\right)$ $\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200} t + \frac{1}{300} \ln\left(\frac{3}{7}\right)$ $\ln N - \ln(300 - N) = \frac{1}{4} t + \ln\left(\frac{3}{7}\right)$ $\ln\left(\frac{N}{300 - N}\right) = \frac{1}{4} t + \ln\left(\frac{3}{7}\right) \Rightarrow \frac{N}{300 - N} = \frac{3}{7} e^{\frac{1}{4}t}$ | dM1       | 2.1  |
|              | $7N = 3e^{\frac{1}{4}t}(300 - N) \Rightarrow 7N + 3Ne^{\frac{1}{4}t} = 900e^{\frac{1}{4}t}$ $N(7 + 3e^{\frac{1}{4}t}) = 900e^{\frac{1}{4}t} \Rightarrow N = \frac{900e^{\frac{1}{4}t}}{7 + 3e^{\frac{1}{4}t}} \Rightarrow N = \frac{900}{3 + 7e^{-0.25t}} *$                                                                                                                                                                                                                        | A1*       | 1.1b |
| (b)<br>Way 4 | $N(3+7e^{-0.25t}) = 900 \implies e^{-0.25t} = \frac{1}{7} \left( \frac{900}{N} - 3 \right) \implies e^{-0.25t} = \frac{900 - 3N}{7N}$                                                                                                                                                                                                                                                                                                                                               | (4)<br>M1 | 2.1  |
|              | $\Rightarrow t = -4\left(\ln(900 - 3N) - \ln(7N)\right)$ $\Rightarrow \frac{dt}{dN} = -4\left(\frac{-3}{900 - 3N} - \frac{7}{7N}\right)$                                                                                                                                                                                                                                                                                                                                            | A1        | 1.1b |
|              | $\frac{\mathrm{d}t}{\mathrm{d}N} = 4\left(\frac{1}{300 - N} + \frac{1}{N}\right) \Rightarrow \frac{\mathrm{d}t}{\mathrm{d}N} = 4\left(\frac{N + 300 - N}{N(300 - N)}\right)$                                                                                                                                                                                                                                                                                                        | dM1       | 2.1  |
|              | $\frac{\mathrm{d}t}{\mathrm{d}N} = \left(\frac{1200}{N(300 - N)}\right) \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(300 - N)}{1200} *$                                                                                                                                                                                                                                                                                                                                    | A1*       | 1.1b |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4)       |      |

|            | Notes for Question 14 Continued                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)        |                                                                                                                                                   |
| Way 3      |                                                                                                                                                   |
| <b>M1:</b> | Separates the variables, an attempt to form and apply partial fractions and integrates to give                                                    |
|            | In terms = $kt \{+c\}$ , $k \neq 0$ , with or without a constant of integration $c$                                                               |
| A1:        | $\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200} t \ \{+c\} \text{ or equivalent with or without a constant of integration } c$ |
| dM1:       | Uses $t = 0$ , $N = 90$ to find their constant of integration and obtains an expression of the form                                               |
|            | $\lambda e^{\frac{1}{4}t} = f(N); \ \lambda \neq 0 \text{ or } \lambda e^{-\frac{1}{4}t} = f(N); \ \lambda \neq 0$                                |
| A1*:       | Correct manipulation leading to $N = \frac{900}{3 + 7e^{-0.25t}}$ *                                                                               |
| <b>(b)</b> |                                                                                                                                                   |
| Way 4      |                                                                                                                                                   |
| M1:        | Valid attempt to make t the subject, followed by an attempt to find two ln derivatives,                                                           |
|            | condoning sign errors and constant errors.                                                                                                        |
| A1:        | $\frac{\mathrm{d}t}{\mathrm{d}N} = -4\left(\frac{-3}{900 - 3N} - \frac{7}{7N}\right)$ or equivalent                                               |
| dM1:       | Forms a common denominator to combine their fractions                                                                                             |
| A1*:       | Correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$ *                                                                            |